Principal Investigators

    HAMERMAN, JESSICA A

    Institution

    BENAROYA RESEARCH INST AT VIRGINIA MASON

    Contact information of lead PI

    Country

    USA

    Title of project or programme

    Function of the TREM2 R47H variant associated with risk of Alzheimers disease

    Source of funding information

    NIH (NIA)

    Total sum awarded (Euro)

    431422.0183

    Start date of award

    15/02/2015

    Total duration of award in years

    2

    Keywords

    Acquired Cognitive Impairment... Aging... Alzheimer's Disease... Alzheimer's Disease including Alzheimer's Disease Related Dementias (AD/ADRD)... Brain Disorders... Dementia... Genetics... Immune System... Neurodegenerative... Neurosciences

    Research Abstract

    DESCRIPTION (provided by applicant): Alzheimer’s disease (AD) is a major clinical problem in the United States and throughout the world. Recent reports from the National Center for Health Statistics state that approximately 5.4 million people have AD in the United States, where it is the 6th leading cause of death. While great strides have been made over the last decades in understanding the pathogenesis of AD, there are still many unresolved issues and no effective treatments. The identification of genetic associations with AD has led to a greater understanding of the mechanisms involved in disease development. Recently, two studies have independently identified variants in the TREM2 gene with increased risk of late onset Alzheimer’s disease. The TREM2 gene encodes a cell- surface receptor expressed on some myeloid cells, including microglia, the macrophage-lineage cells of the brain. Studies in mouse systems have shown that TREM2 can function in microglia and macrophages to inhibit inflammatory responses as well as promote the phagocytosis of apoptotic neurons. As there has been much discussion of whether AD has an inflammatory component, the association of a TREM2 variant with AD supports the idea that increased inflammatory responses of microglia may promote AD development. The predominant TREM2 variant identified as increasing risk of late onset AD encodes a single amino acid change (R47H) in the extracellular portion of the TREM2 receptor. We hypothesize that the TREM2-H47 variant leads to increased inflammation in the brain that promotes late onset AD. Our aim is to test the hypothesis that the TREM2-H47 variant has a reduced ability to inhibit inflammatory responses, promote phagocytosis, and bind sulfated N-acetyllactosamine ligands. We will 1) generate TREM2-Fc fusion proteins of the human and mouse non-risk (TREM2-R47) and risk (TREM2-H47*) variant of TREM2 and determine binding kinetics and specificity using surface plasmon resonance and glycan arrays, 2) express the non-risk and risk variants of human and mouse TREM2 in macrophages and microglia, and compare their ability to inhibit Toll-like receptor induced inflammation, and 3) express the human and mouse non-risk and risk variants of TREM2 in CHO cells and in DAP12-deficient macrophages and compare their ability to bind to and induce phagocytosis of apoptotic cells. Understanding how the R47H variant affects TREM2 function will yield important insights into the role of microglia and inflammation in the pathogenesis of AD. Additionally, the results from these experiments will allow us to better understand how to therapeutically target TREM2 for AD treatment. Therefore this is a high priority area of research in AD centered around the novel finding that TREM2 participates in AD pathogenesis.

    Further information available at:

Types: Investments < €500k
Member States: United States of America
Diseases: N/A
Years: 2016
Database Categories: N/A
Database Tags: N/A

Export as PDF