Neurology

https://neurodegenerationresearch.eu/survey/neurology/

Title of project or programme

Neurology

Principal Investigators of project/programme grant

Title Forname Surname Institution Country

Professor David Brooks MRC Clinical Sciences Centre UK

Address of institution of lead PI

Institution MRC Clinical Sciences Centre

Street Address Imperial College London, Hammersmith Hospital Campus, Du Cane Road

City London
Postcode W12 0NN

Country

United Kingdom

Source of funding information

Medical Research Council

Total sum awarded (Euro)

12862766.93

Start date of award

01-04-2005

Total duration of award in months

60

The project/programme is most relevant to

- Parkinson's disease
- Huntington's disease

Keywords

Research abstract in English

To investigate in vivo with PET/MRI activation and PET ligand studies:

- * The functional anatomy of motor control in health and disease and its modulation by incentives and aversive stimuli.
- * Changes in release of dopamine and other modulatory neurotransmitters, and opening of voltage gated ion channels during different aspects of motor function.
- * The dysfunctional anatomy and transmitter release underlying bradykinesia and involuntary movements in Parkinson's and Huntington's diseases and dystonias.
- * Central mechanisms of adaptation to lesions of the basal ganglia and motor pathways.
- * Resting patterns of altered dopa and glucose metabolism and receptor binding underlying idiopathic and genetic forms of Parkinson's disease, atypical parkinsonian disorders, and involuntary movement disorders
- * The glial response to cortical and subcortical neurodegenerations.
- * Levels of abnormal protein aggregation (beta amyloid, tau, synuclein deposition) in cortical and subcortical dementias. Using PET as a biomarker, to determine in vivo the efficacy of:
- * Putative neuroprotective agents in modifying progression of subcortical degenerations disorders and influencing glial activation and amyloid deposition.
- *Nerve growth factors in restoring function in Parkinson's disease and, in the future, other subcortical neurodegenerations.
- * Cell implants (fetal midbrain and striatal/retinal pigment epithelial/carotid body/transformed fibroblasts/neural progenitor) in restoring function in Parkinson's and Huntington's diseases.

Lay Summary