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Executive Summary

The principal aim of BioFIND was to define a methodological framework for
magnetoencephalography (MEG) to identify sensitive and specific biomarkers of
neurodegeneration in Alzheimer’s disease (AD) and other dementias. This working group
brought together leading international centres for dementia research and brain imaging to
establish the optimal paradigms, analyses and standardised reporting methods for MEG
dementia research. A large integrated data set created from two separate sites was used to
test a mutually agreed pipeline for preprocessing data, and provide direct comparisons of
different analytic methods to quantify performance and potential for a future trial-ready
platform. This pivotal work provides protocols that are transferable and scalable across
multiple sites, enable standardised data sharing, and facilitate large-scale collaborative

projects.
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Introduction

A major challenge to the development of new mechanistic therapies for dementia is to
establish robust biomarkers that can detect and monitor early stages of iliness, and which
directly reflect the consequences of underlying pathology on neurophysiology and function.
Such biomarkers may also be used to understand the emergence of behavioural and
cognitive symptoms across major dementia syndromes. Alzheimer’s disease (AD), the
prodromal state of mild cognitive impairment (MCI), and Frontotemporal lobar
degeneration (FTLD), account for the majority of dementia cases and provide the
opportunity to test new biomarkers through the contrast between clinical symptoms and

pathology.

Magnetoencephalography (MEG) is a promising tool to study neurodegeneration, not only
by its proven sensitivity to disease and safety as a non-invasive test, but also by its direct
representation of network and synaptic physiology. MEG provides enriched high
dimensional data on neuronal activity, oscillatory dynamics, and connectivity at a
millisecond time-scale. Critically, the evoked and oscillatory signals can be used to estimate
neural interactions between brain regions, which are key to establishing reliable biomarkers
of the macroscopic sequelae of neurodegeneration. Brain networks are selectively
vulnerable to neural dysfunction, even in preclinical disease (Maestu et al.,, 2015), and
changes in connectivity can predict conversion from MCI to AD (Bajo et al., 2012). A
recurrent finding is abnormal neural responses and hyperconnectivity, observed in MCl and
early AD (Bajo et al., 2010; Hillary et al., 2015), that then diminish with advancing disease
(Stam et al., 2009) and also observed in FTLD (Hughes et al.,, 2013). Reorganisation in
functional connectivity may be frequency specific, with a dynamic shift in oscillatory power
coupling between regions, indexing disease severity in AD/MCI (Stam et al., 2006; Lopez et
al.,, 2014) and FTLD (Hughes et al., 2013). Frequency-specific selective network
reorganisation and dysfunction can be used not only to distinguish disease from health, but

also discriminate between illnesses (de Haan et al., 2009). Changes in neural oscillations are
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considered to have potential as early prognostic biomarkers of dementia; there is clear
converging evidence for slowing and reduced alpha power and increased power in lower
frequencies, in those with subjective memory complaints and MCI (Garcés et al., 2013,

Lopez-Sanz et al., 2016, Gouw et al., 2017).

However, the complexity of MEG data has inspired diverse analytical approaches to assess
brain networks; data are characterised along numerous dimensions with different
methodological techniques for preprocessing and analysis, and multiple endpoints used to
measure the impact of neurodegeneration. This variability in methods hinders direct
comparisons between studies and across sites, when it is critically important to understand
the common brain responses to damage versus those that are disease specific and potential
targets for therapeutic treatment (cf. Hillary et al., 2015). A standardised approach, which
harmonises data acquisition and analyses, will facilitate data sharing and provide a core
dataset for validation benchmarks in future studies. Frameworks for identifying AD with
MEG have been proposed (Zamrini et al.,, 2011), and we intend to extend this work to

include a multi-centre approach with a combination of analytical strategies.

This working group aimed to produce consensus and evidence based guidelines for MEG
methodologies for dementia research, including multicentre data acquisition protocols and
analysis pipelines. These outputs will support academic and pharma initiatives in dementia
research with the crucial tools for stratifying patients and testing future therapeutic

treatments.

Methods and Timelines

Four key objectives were identified to reach a consensus framework for MEG and dementia:

1. Identify paradigms to measure candidate biomarkers that are reliable, sensitive
and scalable.

2. Evaluate the specificity of MEG biomarkers, and their potential mechanistic
insights.

page 4



BioFIND: Final Report

3. Assess multicentre data acquisition / data sharing challenges

4. Establish good practice protocols that optimise sensitivity to the identified
biomarkers.

The working group met in November 2016 and July 2017 with multiple discussions via email
and smaller meetings throughout the year to write the MEG framework and complete the
pilot study.

Timeline for working group

Workshop 1 Subgroup Progress Subgroup Progress Workshop 2 Prepare
tele- report to tele- report to Shdshbrit
Conference advisory Conference advisory report on

group group MEG

Day1l Day2 Day1 Day2 framework

Talks / Subgroup Subgroups collaborative work Results Eramework

Discussion] Discussion Summary jreport

Month 1 Month 3 Month 6 Month 8 Month 9

The first meeting comprised a series of presentations and discussions, which addressed each
of the objectives. All speakers were asked to respond to two specific questions: 1. What are
the key challenges to identifying Biomarkers in dementia? 2. Can we achieve data
acquisition and analysis at scale and at the global level?

The presenters provided strong evidence that MEG can indeed be sensitive and specific to
AD, other dementias and MCI, with a number of demonstrations of potential biomarkers.
There was convergence across groups using a ‘resting state’ paradigm that revealed a
signature of slowing oscillatory brain activity in AD and MCI, which may point towards a
marker of disease and disease progression. However there were a number of key challenges
raised which make comparing and pooling data from multiple sites complex and methods
difficult to transfer between groups.

The steering committee provided views from a pharmaceutical perspective (Stephen Lowe)
and from ‘big-data’ research (Professor Barry Horwitz) to highlight the challenges faced in
creating large data sets capable of identifying reliable biomarkers that can be used in clinical
trials and to benchmark treatment or disease progression.
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Key Challenges
Key challenges of identifying biomarkers of dementia in MEG were raised, including:

e Different biomarkers are needed for different questions: for example detection of
dementia, differential diagnosis, progression of disease, efficacy and outcome of
treatment strategies, stratification of patients and responder vs. non-responders.
Thus multiple analytical methods or paradigms may be required, and a clear question
addressed to inform disease biology.

e High variability in methods available: including hardware used, acquisition protocols,
types of preprocessing and analysis used, the numerous parameter decisions made
within each method.

e Identifying reliable procedures for clinical trials / drug development is difficult due to
such variability in methods together with the biological variability of patients. A
standardized framework, to reduce methods variance, validated across scientific
groups could provide a reliable and reproducible basis for examining potential
treatment targets.

e Can MEG methods be scaled for acquisition and analyses on larger patient groups.
Multisite studies can provide a higher / faster throughput of data, if data sets can be
directly compared and pooled.

Pilot data set

A data set was created to test the standardized framework of data acquisition and analyses
across MEG sites, and to further examine a set of methods used to identify potential
biomarkers of MCI/AD. A description of the data is in Table 1. Details of the steps taken to
create the shared data pool are presented in table 2.

The data were pooled from two main sites® (the CBU in Cambridge and CTB in Madrid), and
included an eyes-closed resting-state paradigm, from patients with MCI / early AD and age-
matched healthy controls. The data were selected by compatibility and shareability: data
were acquired on Neuromag MEG, had similar acquisition protocols, similar groups of

1 N=3 of the Cambridge Patient group were actually scanned at OHBA in Oxford, as part of a shared project.
The recruitment procedures matched those for the other Cambridge patients, so these 3 are treated as part of
the Cambridge group for demographic and behavioural analyses. For the purpose of covarying out possible site
differences in the MEG analyses (since the magnetic environment may differ across sites), OHBA was treated
as a third site.
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patients/controls and no restrictions in data sharing. Second, an agreed pipeline for
preprocessing the data was created (see appendix 3). Finally the data were analysed by each
subgroup using the preferred methods and presented at the second meeting. Subgroups
were split by location: Cambridge, Madrid and Oxford.

Two main restrictions that deviate from the initial proposal were to include only MEG (and
not EEG) from patients with MCI (and not including patients with FTLD). The MEG data sets
were considered more compatible for pooling, and have the advantage of a much richer
data set than EEG, with greater potential for reliability and validity of results. The pooled
data set was restricted to MCI patients to include compatible data from multiple sites. The
aim of direct comparisons with frontotemporal dementia is confirmed for a later stage to be
undertaken in 2018.

Data Details

For the “Cambridge” data, N=42 patients were recruited following a MCI diagnosis from a
local neurologist, as part of several ongoing projects led by Henson (n=29) and Hughes
(n=13). Some (n=8) of the patients tested by Hughes were recruited as part of the ‘Deep &
Frequent Phenotyping Pilot (DFP) Study’ led by Rowe. All were scanned at the CBU in
Cambridge, apart from n=3 of the DFP study, who were scanned at OHBA in Oxford.

The N=42 controls were selected from the population-representative CamCAN database
(http://camcan-archive.mrc-cbu.cam.ac.uk), so as to be age- and sex-matched to the

patients.

For the “Madrid” data the total sample (N=42 patients and N=42 Controls) was recruited
from the Neurology and Geriatric Departments of the University Hospital San Carlos
(Madrid, Spain), from the Centre for Prevention of Cognitive Impairment (Madrid, Spain)
and the Seniors Center of Chamartin District (Madrid, Spain). All the subjects were right
handed (Oldfield, 1971) and native Spanish speakers.

MCI diagnosis was established according to the National Institute on Aging—Alzheimer
Association (NIA-AA) criteria (Albert et al., 2011): (1) self- or informant-reported cognitive
complaint; (2) objective evidence of impairment in one or more cognitive domains; (3)
preserved independence in functional abilities; and (4) not demented (McKhann et al.,
2011).
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All participants were asked “Please close your eyes and keep them closed and try to relax
and stay still for the duration of the recording. This will take about five minutes”. What
participants had been doing before the eyes-closed recording varied depending on the
project that they were recruited for, and is a potential source of unmodelled variance,
contributing to, for example, tiredness. Drowsiness was also monitored before and after the
recording (by asking participants how they were feeling) to ensure they stayed awake.

All MEG data (from all 3 sites) were recorded on an Elekta VectorView system with 102
magnetometers and 204 planar gradiometers.

The Cambridge MRIs were from 1mm3 isotropic T1-weighted MPRAGE sequences run on a
Siemens 3T Trio or Prisma at the CBU and OHBA. 4 Cambridge patients did not have MRIs
available. The MRI’s acquired in Madrid were T1-weighted, acquired in a General Electric 1.5
Tesla magnetic resonance scanner, using a high-resolution antenna and a homogenization
PURE filter (Fast Spoiled Gradient Echo sequence, TR/TE/TI=11.2/4.2/450 ms; flip angle 12°;
1 mm slice thickness, 256x256 matrix and FOV 25 cm).

Table 1. Data sample included in pilot study.

Madrid Cambridge All
Controls  Patients Controls Patients Controls Patients
N 42 42 42 42 84 84
Sex (M/F) 19/23 19/23 28/14 28/14 47/37 47/37
Age 72.3 72.2 69 69 70.8 70.8
(2.7) (3.3) (8) (8) (6.1) (6.2)
MMSE 29.0 26.9 28.8 25.1%* 28.9 26.0
(1.2) (2.8) (1.2) (3.1) (1.2) (3.1)

* Two patients from Cambridge group had missing MMSE scores
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Figure 1. A) Distribution of MMSE scores (max=30) for each Group (Con=Control;
Pat=Patient) and Site (Mad=Madrid; Cam=Cambridge; OHBA patients included with
Cambridge since recruited same way). B) ROC after adjusting for age, sex and Site.

There were more women than men in the Madrid group, and more men than women in the
Cambridge group. Sex was used as a covariate in imaging analysis below.

A 2 (Group: Control vs Patient) x 2 (Site: Cambridge vs Madrid), between-subject ANOVA
was performed on Age and MMSE score. For Age, though there was a significant main effect
of Site, F(3,164=10.3, p=.002, with the Madrid group older, there was no significant main
effect of Group, or interaction between Group and Site, Fs<1. Age was used as a covariate in
imaging analyses below.

For MMSE (excluding the two missing scores), there was the expected main effect of Group,
F3,162)=70.9, p<.001, with patients scoring lower than controls. There was also a main effect
of Site, F(3,162)=7.44, p=.007, with Cambridge site having lower scores, and an interaction,
F(3,162)=5.67, p=.018, with the control-patient difference being larger from the Cambridge
site. There was a considerable spread and negative skew for the patients (Figure 1A).

For a reference to the imaging analyses below, an ROC was performed on the N=166 MMSE
scores for distinguishing controls from patients (Figure 1B), which revealed an overall Area
Under the Curve (AUC) of 81% (a balanced accuracy of 75%), regardless of whether MMSE
scores were adjusted for age, sex and site.
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Subgroup Results

CAMBRIDGE

MRIs

The T1l-weighted MRIs were initially coregistered to the MNI template using a rigid-body
transformation, and then segmented into 6 tissue classes: GM, WM, cerebrospinal fluid
(CSF), bone, soft tissue, and residual noise using SPM12. The GM images were then
submitted to diffeomorphic registration (DARTEL) to create a group template image, which
was then affine-transformed to the MNI template. To accommodate changes in volume
from these transformations, the GM images were modulated by the Jacobean of the
deformations to produce estimates in MNI space of the original local GM volume. The
resulting images contained 121x145x121 voxels of 1.5mm isotropic resolution, and were
finally smoothed by an 8mm isotropic Gaussian kernel.

Mass Univariate (VBM)

There were N=164 participants with MRIs (not acquired on 4 of the Cambridge patients),
and for simplicity of analysis, the three patients scanned at OHBA were included with those
scanned at the CBU. A voxel-based morphometric (VBM) analysis was run with a General
Linear Model (GLM) including Group (Patient/Control) and Site (Madrid/Cambridge) factors,
and age and sex as covariates. Inhomogeneity of error variance was modelled and used to
prewhiten the GLM and data. Results showed the expected reductions in GM volume in
patients, most prominently in bilateral medial temporal regions (Figure 2), as well as medial
parietal and some lateral temporal regions. There were also large effect of Site across the
whole brain (not shown), but any Site by Group interactions were small and not in regions of
significance.

Multivariate Classification (MKL)

The normalised gray-matter images were also used to assess classification performance
using  Multi-Kernel  Learning  (MKL)  within the PRoNTO v2.0 toolbox
(http://www.mlnl.cs.ucl.ac.uk/pronto), with leave-one-out-cross-validation. In addition to

the 4 patients without MRI, a further 2 patients were excluded because excessive
movement during their MEG scan (see below), so that the same N=162 participants were
used for both MRI, MEG and combined MRI-MEG image-based classification (see later). Four
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covariates were included: age, sex and binary indicators for whether the site was CTB, CBU
or OHBA.

The AUC was 75% (with a balanced accuracy of 68%; see ahead to Figure 8 & 9), less than
the MMSE, though of course both MMSE and clinical scans like the T1 MRI (though not
exactly the same scans) are part of the evidence used by the clinician to label someone with
MCI, so these accuracies are likely to be upward biased (unlike the MEG).

contrast
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160

Figure 2. VBM results showing where local gray-matter volume is greater from Controls
than Patients (p<.001 uncorrected height threshold, p<.05 corrected for cluster extent)

MEG

Mayxfilter

The continuous data were cleaned using the Maxfilter software (v2.2.12). The origin of the
SSS expansion was determined by fitting a sphere to all digitized headpoints excluding those
around the nose (excluding those with y>0 and z<0). Separate cross-talk and calibration files
were used for each of the 3 sites. There were 3 maxfilter steps. In the first step, bad
channels were detected (those that maxfiltered reported as bad in more than 5% of the 4s
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epochs?) and movement parameters written every 1s. In the second step, the data were
cleaned using the temporal extension of SSS (10s windows with a correlation of 0.9
recommended by Madrid), with bad channels defined from the first step. The data were
also corrected for head motion every 1s, except for 11 Madrid participants (8 patients) and
1 Cambridge control from whom movement correction failed (owing to loss of HPI coils).
Mains noise at 50Hz and harmonics were attenuated. In the final step, the data were
transformed into common device space, by aligning the head and device axes, and setting
the head centre to [0 13 -6] in device coordinates.

Distributions of MaxFilter outputs are shown in Figure 3, and mean values in Table 2. The
OHBA group were excluded from statistics, given that only 3 patients, resulting in a 2
(Group: Control vs Patient) x 2 (Site: Cambridge vs Madrid), between-subject ANOVA.

Table 2. Maxfilter and epoch information.

CTB (Madrid) CBU (Cambridge) OHBA (Oxford)
Controls  Patients Controls Patients Controls Patients

N 42 42 42 39 - 3

Bad channels 7.38 6.93 4.64 6.07 - 4.33
Mean Move (mm) 0.80 1.10 0.61 0.94 - 3.15
SD Move (mm) 0.18 0.30 0.06 0.24 - 3.04
Position (mm) 10.5 12.0 10.0 12.9 - 13.9
Time of day (24h) 12.0 11.6 14.2 14.0 - 13.5
Data Onset (s) 250 234 125 132 - 124
Data Offset (s) 419 404 298 306 - 294
No. of Epochs 38.2 39.7 39.8 37.8 - 33.0

2 NB This step differs from the analyses run in Madrid who identified bad channels by visual inspection.
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Figure 3. Maxfilter outputs: number of bad channels (Bad), distance between the head
centre and device centre (Position), mean within-session translation (MMove) and
standard deviation of within-session translation (SDMove). NB OHBA group included
only 3 patients.

The number of bad channels showed no difference between Groups, F<1, though more bad
channels for CTB than CBU, F(1,163)=13.5, p<.001 (and no significant interaction, F(1,163)=1.11,
p=.29).

Head motion was summarised by the mean and the standard deviation (SD) of translations
over the recording. Excluding the 12 participants for whom head motion could not be
estimated, there was significantly more mean movement, F(1,151)=4.96, p<.05 in the patients,
but no difference between sites, F(1,151)=1.52, p=.22 or interaction, F<1. The same pattern
was seen for the SD of translations, with a borderline group difference, F(1,151)=3.36, p=.07,
but no difference between sites, F(1,151)=1.20, p=.27 or interaction, F<1.

The translation between the head centre and device centre (“Position” in Table 2) was
significantly greater for the patients, F(1,163)=5.10, p<.05, but did not differ by, or interact
with, site, F<1.
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Other characteristics of the MEG data are shown in Figure 4 (and summarised at end of
Table 2).

18 50
18 W
£~ &0
14 [
o o
[1: I - O
A Ll sy
B " G
LT =
LiH]
E & a “
= &
4 10
, =
o ConCTH PatCTE CorGBU Paizau ParOHZA 0 ConTB PatGTE ConCBU Paicau ParOHEA
300 450
250 200
o 350
i =
c:l 180 O 250
% 100 % ”
) ™ 150
100
50
50
o ConCTB PasCTE ComCBU Pai8U ParOHEA ° ConTB PaiCTE ConCBU PaiCBU PasOHEA
Figure 4. Other MEG Data Characteristics: Time of Day, Number of valid epochs
(NumEpochs), start of first epoch (DataOnset) and end of last epoch
(DataOffset).

The time of day in which the MEG data were acquired did not differ between Groups,
F(1,163=1.07, p=.30, but was later for CBU than CTB sites, F(1,163=66.1, p<.001 (with no
interaction, F<1).

The continuous data were divided into multiple 4s epochs that were judged to be artefact-
free according to visual inspection of data maxfiltered by the Madrid researchers (“valid”
epochs). The start of these epochs within the recording was later in the CTB than CBU data,
because the CTB participants performed other tasks prior to rest within the same recording
(whereas at the CBU, any previous tasks were run as separate recordings). Importantly, the
groups did not obviously differ within each site with respect to either start or end of valid
data (Figure 5).
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The number of valid epochs did not show main effects of Group or Site (Fs<1), though there
was an interaction between these factors, F(1,163)=4.22, p<.05, with numerically more valid
epochs for patients than controls at CTB site, but vice versa at the CBU site.

Processing in SPM

The maxfiltered files were read into Matlab via SPM12 and epoched into valid epochs. The
data within each epoch were then filtered using a fast Fourier transform with multiple
Hanning tapers, as implemented by FieldTrips “mtmfft” function, for frequencies from 1 to
92Hz in steps of 0.25Hz. The frequency resolution increased approximately exponentially
with mean frequency. The resulting power spectra were averaged over each epoch and the
(base 10) logarithm taken. The frequencies were then sub-sampled approximately
logarithmically as: every 0.25Hz from 1-14Hz, every 0.5Hz from 14-21 Hz, every 1 Hz from
21-30 Hz, every 2Hz from 30-48Hz and every 4Hz from 52-92Hz.

Two patients (one from CBU, one from OHBA) were excluded for a large distance from
centre of helmet (>30mm) and excessive motion (>6mm) respectively (see Figure 3).

The mean power spectra (absolute power) for each Group and Site (excluding OHBA
because too few participants to estimate mean accurately), averaged across sensors of a
given type, are shown in Figure 5. Patients showed higher power in lower frequencies (up to
approximately 16Hz). There was also large effect of Site, with more power overall for the
CTB site, and a suggestion of a Site-by-Group interaction with higher power for patients
than controls above approximately 25Hz for the CBU but not for CTB.

We examined mean power within Alpha (6-12Hz) and Theta (4-7Hz) bands, as well as their
ratio and the frequency of the Alpha peak (Figure 6), based on prior evidence that the latter
relate to wakefulness (the peak was identified after smoothing with a 6-frequency bin
average).

The AUC (after adjusting for Site, now including OHBA, as well as age and sex) was highest
when based on Theta power (71% for both magnetometers and gradiometers), less for
Alpha power (63% for magnetometers and 64% for gradiometers) and Alpha peak frequency
(63% for magnetometers and 62% for gradiometers) and least for Alpha-Theta ratio (62% for
magnetometers and 51% for gradiometers; the latter most likely because Theta log-power
values were close to zero, rendering the ratio unstable).

When additionally adjusting data first for bad channels, movement (mean and std) and
distance from origin, these figures dropped to: Theta power (mag/grd) 67%,67%; Alpha
power (mag/grd) 60%,61%; Alpha Freq (mag/grd) 60%,59%; Alpha:Theta power (mag/grd)
59%,53%
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Figure 6. Distribution of Alpha Power (top left), Theta Power (top right), Alpha-Theta ratio
(bottom left) and Alpha peak frequency (bottom right) for magnetometers. Gradiometers
were similar, except for the Alpha-Theta ratio which was unstable owing to Theta power
values close to 0.

Mass Univariate (Scalp-frequency)

The topographic distribution of the group and site differences in power were tested by
projecting the sensor locations (either for magnetometers or gradiometers) onto a 32x32
grid and interpolating the data between grid points for each frequency separately, to
produce a 32x32x94 3D scalp-frequency image. These images were smoothed in the
frequency dimension a 2-pixel FWHM Gaussian kernel. The smoothed images for the N=166
participants with valid MEG data were then entered into the same general linear model as
for VBM above, with age and sex covariates. Consistent with above findings, the
gradiometers in patients showed greater power in frequencies around the theta range
(peaking at 5.5Hz), which was maximal over lateral temporal regions (Figure 7). They also
showed greater power at around 52Hz over the centre of the scalp. Controls did not show
significantly greater power anywhere. There were also significant main effects of Site over

much of the space, particularly higher frequencies over frontal scalp regions, while Site-by-
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Group interactions were confined to two smaller clusters over posterior scalp centred at
2.5Hz and at 72 Hz.
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Figure 7. Scalp-frequency results for gradiometers for Pat>Con (p<.001 uncorrected
height threshold, p<.05 corrected for cluster extent)

Multivariate Classification (MKL)

The smoothed scalp-frequency images were also used to assess classification performance
using MKL, for the same N=162 participants used for the MRI MKL analysis above. Four
covariates were included: age, sex and binary indicators for whether the site was CTB, CBU
or OHBA.

The AUC was 61% for magnetometers (balanced accuracy of 59%; Figure. 8A) and 71% for
gradiometers (balanced accuracy of 66%; Figure 8B), slightly worse than for the MRI (75%,
Figure 8C). MRI together with MEG had an AUC of 79% (Figure 9).
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Combined Multivariate Classification (MKL) of MRI and MEG

Finally, we combined the MRI gray-matter images with the magnetometer and gradiometer
scalp-frequency images in a multi-kernel classifier with 3 kernels. The AUC for this
multimodal classification was 79% with balanced accuracy of 76%, better (numerically at
least) than for any one modality alone (Figure 9), and comparable to MMSE. Of course, this
is just using MEG power as a feature of interest — higher MEG classification might result with
other metrics, such as connectivity.
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Figure 8. ROCs from MKL image-based classification for magnetometers (A),
gradiometers (B), MRI gray-matter (C) and combined magnetometers, gradiometers and
MRI (D).
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Figure 9. ROCs from MKL image-based classification for MEG (blue), MRI gray-
matter (red) and combined MEG and MRI (green).

MADRID

Materials and methods.

MEG acquisition and preprocessing.
Biomagnetic data were acquired using a 306-channel Elekta Vectorview system (Elekta AB,
Stockholm, Sweden) placed inside a magnetically shielded room (VacuumSchmelze GmbH,
Hanau, Germany) located at the Laboratory of Cognitive and Computational Neuroscience
(Madrid, Spain). MEG signals were recorded while the subjects were awake, sitting
comfortably and with their eyes closed. If a subject reported feeling sleepy during the
session, they were given sufficient time to feel more awake and the recording performed
again.
Prior to the recording, two electrodes were placed above and below the left eye, in a bipolar
montage, to acquire electro-oculographic activity. In addition, four head position indicator
(HPI1) coils were placed in the head of the subject, two in the forehead and two in the
mastoids. The position of the 3 fiducial points, along with the HPI coils and over 200 evenly
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spaced points of the head shape of the subject, were acquired using a three-dimensional
Fastrack digitizer (Polhemus, Colchester, Vermont). The HPI coils were fed during the whole
acquisition, allowing for offline estimation of the head position.

4 minutes of resting state activity were acquired from each subject. Data was online filtered
between 0.1 and 330 Hz, and digitized using a sampling rate of 1000 Hz. After the
acquisition, recordings were processed offline using the spatiotemporal extension of the
signal separation algorithm (tSSS) (Taulu and Simola, 2006). Parameters for the tSSS
consisted of a window length of 10 seconds and a correlation threshold of 0.9. This
algorithm removes the signals whose origin is estimated outside the MEG helmet, while
keeping intact the signals coming from inside the head. In addition, the continuous HPI
acquisition, combined with the tSSS algorithm, allowed for the continuous movement
compensation. As result, the signals used in the next steps come from a set of virtual
sensors whose position remains static with respect to the head of the subject. Data from
subjects whose movement during the recording was larger than 25 mm were discarded,
following the recommendations of the manufacturer.

MEG data were examined using the automatic artifact detection of FieldTrip toolbox
(Oostenveld et al., 2011), looking for ocular, muscular and jump artifacts. A MEG expert, to
correct both false positives and negatives, confirmed the detected artifacts. Muscular and
jump artifacts were marked and segments containing them were completely discarded. On
the remaining segments, a blind source separation algorithm based in second order
statistics (SOBI) was used to obtain statistically independent components. SOBI components
were labeled as oculographic, cardiographic, noisy components or real data. Artifact-related
components were eliminated, and segments containing persistent oculographic artifacts
were removed. Last, data was segmented in 4-seconds epochs of artifact-free data. Data
with less than 20 epochs were discarded from the analysis, due to a low signal to noise ratio.

Source reconstruction.

A volumetric and regular grid with 1-cm spacing was generated for the MNI template (with
one source placed in (0, 0, 0) in MNI coordinates). Only sources inside the brain surface (as
defined in the previous section) were taken into account, resulting in a source model with
2459 sources, each consisting in three perpendicular dipoles. Anatomical labels were
assigned to each source according to two anatomical atlases: the automatic anatomical
labeling (AAL) atlas (Tzourio-Mazoyer , 2002) and a reduced version of the Harvard-Oxford
atlas (Desikan et al., 2006; Lopez et al. 2017). The final number of sources considered
depended on the atlas, as only cortical sources as well as hippocampal and
parahippocampal ones were used: 1467 for the AAL atlas and 1489 for the HO atlas.

A T1l-weighted MRI was acquired for each subject. Using this image, the MNI defined grid
was transformed to subject space. In addition, a binary mask for the subject brain was
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generated using those voxels whose combined probability of WM, GM and CSF were greater
than 0.5. Last, a mesh surface was generated from the previous mask using FieldTrip. Finally,
both the grid and the brain surface were manually realigned to Neuromag coordinate
system using the three fiducials and the head shape as guides. A lead field was calculated
using a realistic single shell head (Nolte, 2003) as forward model.

Data was filtered in the classical bands (theta, 4-8 Hz; alpha, 8-12 Hz; beta, 12-30 Hz;
gamma, 30-45 Hz and broad band, 2-45 Hz) using a 2000™ order FIR band-pass filter
designed with a Hanning window. 2 seconds (2000 samples) of real data were used as
padding in each side, and discarded after the filtering. The source reconstruction was
performed using a Linearly Constrained Minimum Variance (LCMV) beamformer (Van Veen
et al., 1997) for each band. The resulting spatial filters were projected over the maximal
radiation direction, getting only one filter per source. Then, source-space time series were
reconstructed and grouped according to the atlas, obtaining one representative time series
for area using (1) the PCA (principal component analysis) of all the sources in the area or (2)
the source closest to the centroid of the area.

Spectral analysis.
MEG power spectra between 2 - 45 Hz were calculated for each of the 2459 sources in each
clean segment, and then averaged across trials. We employed a multitaper method using
discrete prolate spheroidal sequences as tapers and 0.5 Hz smoothing. Power spectra were
normalized by the overall power between 2 - 45 Hz. This procedure has been previously
detailed elsewhere (Lépez-Sanz et al., 2016).

Power statistics
Relative power in each classical frequency band was compared with a 2-way ANOVA using
diagnostic (MCI vs CN) as the main factor and the center (Madrid vs Cambridge) as a
covariate. Multiple comparisons were controlled using Cluster Based Permutation Test
(CBPT) and using a = 0.05 for cluster thresholding.

Frequency Results

Delta band (2 - 4 Hz)
Patients with MCI showed increased relative delta power in a cluster comprising bilateral
brain regions over occipital areas such as cuneus, precuneus and calcarine; widespread
bilateral temporal structures including hippocampus and parahippocampal cortices among
others and extending into bilateral orbitofrontal areas (p = 0.01) (Figure 10A).
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Theta band (4 — 8 Hz)
Relative theta band power was significantly increased in MCI patients (p = 9.9 - 10°). Areas
affected by theta power increase were distributed across the entire cortical surface, but
were more intense over bilateral middle temporal gyri (Figure 10B)

Alpha band (8 — 12 Hz)
MCI patients exhibited a significant decrease in relative alpha power (p = 0.027). Alpha
disruption affected bilateral temporal cortices. Furthermore, these alterations extended
into orbitofrontal regions (Figure 10C).

Beta band (12 - 30 Hz)
Beta band relative power was significantly decreased in MCI patients (p = 9.9 - 10°),
although the significant cluster included widespread regions affecting most cortical regions,
it was more intense over bilateral temporoparietal areas such as angular gyrus, inferior
parietal lobe and middle temporal gyri (Figure 10D).

Figure 10. Differences in relative power across frequency bands for patients vs controls. A, Delta
band (2 — 4 Hz); B, Theta band (4 — 8 Hz); C, Alpha band (8 — 12 Hz); D, Beta band (12 —30 Hz).
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Functional connectivity analysis

Functional connectivity (FC) analyses were performed using Phase Locking Value (PLV) and
Mutual Information (MI). The FC between each pair of areas was estimated as the FC
between (1) the sources closest to their respective centroids or (2) the PCA of all the sources
of each area. Areas were defined using both AAL and HO atlases, but since AAL has higher
spatial resolution especially in the frontal areas, only the results using AAL are shown here.

Statistical comparisons between groups were performed using two-factor ANOVA test, with
the diagnosis and the center where the recording was taken (CTB in Madrid or CBU in
Cambridge) as factors. Since FC values do not usually comply with the normality and
homoscedasticity hypothesis of the ANOVA test, we calculated the nonparametric statistics
by mean of a permutation test, with 100,000 permutations. In order to address the multiple
comparisons problem, a False Discovery Rate (FDR) of 10% (Q=0.10) was applied to the
results.

Results in Theta band
Both PLV and MI showed differences between the MCI patients and the healthy controls.
Several motifs could be identified. In essence, two main results were founded: 1) PLV & Ml
measurements, using PCA and centroid methods, detected a parieto-occipital increased FC
in the MCI group when compared to the CN group. 2) In addition, Ml FC values, using the
centroid method, showed a fronto-frontal enhanced FC along with a diminished parieto-
temporal FC in the MCI group when comparing to healthy controls. See figure 11A and 11B.

Results in Alpha band
Alpha band showed the same significant motif for both PLV (up) and Ml (down) FC values
using the PCA method. The motif showed a fronto-frontal and fronto-parietal decreased FC
in the MCI group when compared to the healthy control group. See figure 11C and 11D.

Results in broadband

MI analyses in broadband showed an increase in connectivity in MCI at a global level, when
comparing with the healthy controls. These results appeared both using both the PCA-based
(up) and the centroid-based (down) FC. See figure 11E and 11F.
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Figure 11. Differences in functional connectivity (PLV and MI) between the MCI patients and the healthy
controls within frequency bands. A, Theta band PLV based on centroid areas. B, Theta band MI based on
centroids areas; C, Alpha band PLV based on PCA areas; D, Alpha band MI based on PCA areas; E, Broadband
MI based on PCA areas; F, Broadband MI based on areas centroids. Red lines: MCI> Controls; Blue Lines

Controls>MCI.
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OXFORD

The following analyses explore the sensor-space power spectrum and source-space Hidden
Markov Model (HMM) analyses on the BioFIND cohort. This is a first pass proof-of-concept
analysis designed to demonstrate the effectiveness of the preprocessing pipeline with the
sensorspace analysis and the feasibility of HMM analyses on large-scale multi-site datasets.
No strong scientific claims are reported from the HMM analyses, rather we show that there
is no evidence to suggest that the differences in cohort or acquisition site make HMM
analyses impractical.

Materials and methods

MEG Sensorspace Preprocessing
The data are preprocessed using tools from the OHBA Software Library (OSL). This is a
Matlab Toolbox that builds upon SPM, Fieldtrip and FSL to provide a range of useful
processing and analysis functions.

The analysis begins following the tSSS MaxFilter procedure performed by Cambridge and
Madrid. The Maxfiltered data were converted to SPM12 format and was then downsampled
to 250Hz and a 1-45Hz bandpass filter applied.

Time segments containing artefacts were detected using an automatic algorithm to ensure
reproducibility and avoid user bias that may be introduced by manual artefact detection.
Bad segments were rejected by identifying outliers in the standard deviation of the signal
computed across all sensors in 1s non-overlapping windows. Outliers were identified using
the generalized extreme Studentized deviate method (Rosner, 1983) at a significance level
of a 0.05 and with the maximum number of outliers limited to 20% of the data set. The
windows corresponding to the outliers were then marked as bad samples in the continuous
dataset and excluded from subsequent preprocessing and analysis. Further de-noising was
carried out using Independent Components Analysis. This decomposes the sensor space
data into a set of statistically independent additive components. Each component is
correlated with the EOG and ECG channels and any components with a correlation greater
than .5 were marked as ‘bad’ and rejected from the dataset.

Sensor-space General Linear Model
General Linear Modelling was used to explore the sensor space power spectra. These
analyses were carried out in OHBA Analysis Tool (OAT). The sensor space data was z-scored
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to normalised total spectral power across sensors and participants before being converted
into Time-Frequency data using a 5-cycle wavelet transform and the mean power across
time modelled with a GLM using a single constant regressor. This first-level regression is
repeated for each frequency of each channel for all participants.

Two second-level GLMs are used to summarise the differences in power spectra across
participants. Firstly, we perform a contrast between patients and controls across the whole
dataset and secondly, we interrogate the effect of MMSE within the patients only.

In the Patient-Control contrast, power is predicted across all datasets using a constant mean
regressor along with the participant’s diagnostic condition, gender, age and site. Three
contrasts are used to summarise the power for Patients, Controls and Patients-Controls.
This second-level GLM is repeated for each sensor and each frequency. In the MMSE
correlation, power at each sensor and frequency is predicted across the patient datasets
using a mean term, regressors for site, gender and age and a parametric regressor coding
MMSE score. The contrast of interest isolated the MMSE regressor. Again, this GLM is
computed for all frequencies in all sensors.

MEG Sourcespace Preprocessing
Registration between the MEG data and individual structural MRI scans was carried out
using RHINO (Registration of Headshapes Including Nose in OSL). This tool uses FSL scalp
extraction routines and is designed to make full use of Polhemus TM 3-D digitizer
headshape points during the registration. The first stage uses the Polhemus and MRI
Fiducials to make an initial registration before the scalp extraction and headshape points are
used to fit a more precise registration.

Prior to source modelling, the Magnetometers and Gradiometers are normalised to
compensate for their large differences in variance. An eigenvalue decomposition is
computed across sensors for each sensor-type and the data are scaled by the smallest
eigenvalue. The normalised sensor data is then projected onto a 8mm grid across the brain
using an LCMV beamformer. The data covariance in the LCMV beamformer is regularised to
a dimensionality of 50 prior to beamforming, partly to compensate for Maxfilter reducing
the rank of the sensor data and partly to attenuate the effect of noise on the covariance
estimate. Parcel-wise time-courses are estimated using a PCA across all voxels within 39
cortical parcels. The 39 parcel time-courses are then orthogonalised using symmetric
multivariate leakage correction to reduce any volume conduction (Colclough et al., 2015)
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Hidden Markov Modelling
A Hidden Markov Model is used to describe the network dynamics in the source-space
Amplitude Envelope data.

The amplitude envelopes of the parcel time-courses are computed using the Hilbert
Transform. The amplitude envelope time-course for each subject and parcel is then
demeaned and variance normalised before being concatenated into one group time-course.
A 6-state HMM is then inferred on this data. A multivariate Gaussian observation model is
used describing the mean and covariance of the envelope data following the methods in
Baker et al. (2014) and Vidaurre et al. (2017a).

The HMM inference returns a time course of posterior probabilities, representing the
probability that a state is on at each time point. Global statistics about the HMM dynamics
are estimated from these attributes. Firstly the average lifetime (also known as the dwell-
time) of each state is computed as the average time elapsed between entering and exiting a
state. The fractional occupancy is computed across all time within a single participant’s
dataset as the proportion of time spent in each state. Finally, the interval length is
computed as the time elapsed between visits to a state.

The spatial distribution of Envelope Power is extracted from each states observation model
by taking the expectation of the mean envelope value for each parcel and state. These
values are normalised across parcels within each state to provide a summary of the
topology of power.

Group differences in the State Fractional Occupancies are modelled using a General Linear
Model (GLM). Six predictors are used to describe individual variation in fractional occupancy
for each state, the regressors and contrasts are summarised in figure 12. STDCOPEs are
estimated as the square root of the VARCOPE of each COPE and t-statistics are the COPE
divided by the STDCOPE.

Permutation statistics are used to establish statistical significance based on the t-statistic for
each contrast. 5000 row permutations are used to build a null distribution of COPE statistics
and significance was taken to be the 97.5th percentile of this null distribution. This is
repeated for the reverse contrast to perform a two-tailed test. Multiple comparisons are
corrected by adding the maximum statistic across states to the null distribution at each
permutation.
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Results

Sensorspace General Linear Model
Figure 13a shows the group Contrast of Parameter Estimates (COPEs) for the mean power in
each frequency band averaged across all sensors. Both patients and controls have a strong
1/f type slope across the spectrum and a clear alpha oscillation. The biggest differentiating
factor between groups is a shift in the peak frequency of the alpha oscillation, which
averages 10Hz for controls and around 7-8Hz for patients. A t-test between the two groups
per frequency band shows higher spectral power for patients in low frequency bands
(<~8Hz) and controls in higher frequencies (>~8Hz). The group level COPE for each group is
shown across sensors in figure 13b and shows that the Alpha effect is more prominent in
posterior sensors whilst the frontal sensors are dominated by the 1/f slope and show little
group difference.
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Figure 13. A) The COPEs for the Patient and Control groups for each frequency averaged across sensors and the
t-stat for the contrast between them. B) The average COPE for each frequency for each sensor.

Figure 14a shows the distribution of MMSE scores for the patient and control groups. There
is a strong ceiling effect for the controls, who all show high (>25) MMSE scores with little
variance across participants. In contrast, the patients show a wider spread in MMSE value
(95 percentiles are between 18 and 30). As such, we proceed with the MMSE correlation
using only the patient values.

The topology of the COPE quantifying the parametric variation between MMSE and spectra
power in the alpha bands across patients is shown in figure 14B. The strongest correlations
are in the posterior sensors, consistent with the Patient-Control contrast. Finally, the
relationship between power at 11Hz and MMSE for a single sensor is shown in figure 14C
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with a linear least-squares line of best fit. This shows the positive correlation between
MMSE and high (>8Hz) alpha power.
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Figure 14. A) The MMSE distributions for the Patient and Control groups. B) The topology of the COPE
quantifying the relationship between high alpha power and MMSE for the patient group. The black circle
indicates the sensors of interest C) The relationship between high alpha power and MMSE in the sensors of
interest indicated in B.
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Source-space Hidden Markov Model

The expected power for each parcel in each state is shown in figure 15A. Power is
normalised within each state to show the relative topology of power. States 1, 2 and 4 have
high envelope values in frontal and frontotemporal regions whilst state 3 is characterised by
high envelopes in the motor cortex. Finally, states 5 and 6 show power in occipital regions.
The mixing between these states is even across participants and states, though there is
some inter-subject variance as seen in figures 15B. Finally, the state lifetimes are around
100-200ms (Figure 4c) and reoccur around every 500-1500ms (Figure 15C,D), consistent
with previous applications of the Amplitude Envelope HMM (Baker et al., 2014).
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Figure 15. A) The spatial maps describing the areas of high and low envelope power within each of the six
states. B) The fractional occupancy distribution across participants for each state. C) The average lifetime of
each state. D) The average interval time for each state.

A General Linear Model (GLM) is estimated to describe the individual subject Fractional
Occupancy values for each state. The Contrast of Parameter Estimates (COPEs) for the
differential contrasts outlined in figure 12 can be seen in figure 15 with STDCOPEs as error
bars. The ‘Mean’ contrast in Figure 16 recovers the mean fractional occupancies of the
distributions in figure 15B. The other 3 contrasts quantify sources of variance which we do
not straightforwardly relate to MCl or it symptomology: Madrid>Cambridge, Male>Female
and Age. No state showed a significant effect of any of these regressors compared to the
null distributions.

The HMM is a highly sensitive to changes in the statistical properties of data whether they
arise from change in the underlying neuronal dynamics or from change in extraneous noise.
For instance, it is common for differences in noise between scan sessions to lead to single
states coding for single data runs or specific artefact sources. Here, we show that it is
feasible to estimate the HMM on large multi-site datasets without the acquisition
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differences dominating the outcome. Rather, we see that the HMM is able to identify a
range of interpretable states which mix well across all scan sessions. A further exploration of
the diagnostic condition and MMSE values would be feasible given these results.
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Figure 16. The results of the GLM on the HMM Fractional Occupancy scores. A) The COPE for the mean
fractional occupancies, these are the same as the mean values in figure 4b. B) The t-stats for the contrast
between the two acquisition sites. Dotted lines indicate null permutation significance critical values from the
positive and negative contrasts. C) The t-values for Gender. D) The t-values for Age.
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Outcome summary & Framework of Recommendations

The working group achieved the main goals specified in the protocol by creating a consensus
methodological framework for assessing MEG indices of MCI/AD, and using this framework
to form a database of multicentre results and a pipeline for preprocessing and statistical
analyses that identified several reliable MEG markers of MCI. The specificity of the results is
to be examined in further analyses that compare additional patient groups (including
frontotemporal dementia).

The details of the paradigm, data acquisition and preprocessing are included in Table 3
below.

MEG database summary

The database combined resting state data from patients and controls acquired in Madrid,
Cambridge and Oxford. Collating and merging the data highlighted a few key issues, some
specific to MEG but also involved generic hurdles for multisite studies. For example, data
sharing requires multiple permissions from research ethics committees and site approvals to
transfer and allow access to data. In the database, only compatible datasets were included
(in terms of hardware, paradigms and participants) that could be directly compared.
Although there were still site differences demonstrating the need to include site as a
covariate in the analyses, the analyses do show that acquisition differences did not
dominate the outcome.

MEG analyses summary

The analyses demonstrated the sensitivity of MEG to disease, with changes in cortical
oscillations identified as a key feature of MCI. Scalp-frequency images could classify patients
and controls with 71% accuracy, comparable to using the MRI or MMSE (75% and 81%,
respectively), and together with the MRI improved classification to 79%. The sensitivity of
MEG is clear, especially considering that the MRI and MMSE are not independent measures
for classification, as both are used in the diagnostic decision.

Frequency specific abnormalities evident in the patient group included increased power in
lower frequencies (2-8Hz), a decrease in higher frequencies (12Hz+), and a downward shift
in peak alpha frequency that correlated with MMSE scores. A decrease in alpha power (6/8-
12Hz) in the patient group was dependent on whether the data were normalised. Theta
power was the most sensitive to classification, with 71% accuracy for both sensor types.
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Localisation of these frequency changes was prominent across widespread bilateral
temporal structures.

Functional connectivity was also sensitive to frequency specific changes in MCl: In frontal
regions connectivity was enhanced in the theta band, but diminished in the alpha band, and
connectivity to posterior regions was reduced in both bands.

The results reveal oscillatory signatures that are sensitive to disease, have the potential to
further understanding of the mechanisms of degeneration and conversion from MCI to AD,
and to provide a benchmark for future studies, including validation of new experiments,
comparing with other types of neurodegeneration, examining prodromal genetically
susceptible individuals, and for assessments of therapeutic treatments.

MEG acquisition and procedures summary

Table 3. Multisite data acquisition and data sharing protocols for a short ‘5 minute-eyes
closed’ resting state paradigm.

Data Sharing Anonymised data Individuals were not identifiable from MEG / MRI
data. For example, no PID in data sets, defacing of
MRI’s.
Research Ethics Ethical committee approved data sharing beyond the
Committee team acquiring the data.
Site approval Documents set up to approve transfer of data

between sites according to site specific
administrative procedures.

Hardware Elekta Neuromag Current study includes data only from Elekta
neuromag, but protocol could be extended to other
systems.

Paradigm Acquisition instructions Participants instructed “Please close your eyes and

keep them closed and try to relax and stay still for
the duration of the recording. This will take about
five minutes, please stay awake”.

Acquisition procedures Data acquired at 1Khz for at least 5 minutes.

Instructions and recording time are limited to reduce
discomfort or confusion in patients.

Time of acquisition Times kept consistent to midmorning / early
afternoon.
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Participants Sample size Sufficient numbers from each site to include site
effects as covariates (84 patients and controls from

Cambridge and 84 from Madrid).

Patients and Controls Healthy controls compared between sites to examine

compatibility of data and site effects.

Demographics Age range, disease stage and duration similar across
site groups.

State during MEG Resting state acquired as first paradigm in session, or

acquisition at least not having completed other cognitive or

learning paradigms immediately prior.

MRIs T1 structural MRIs acquired for all participants.

Preprocessing pipeline

Proposed pipeline for MEG data analysis {(BioFIND project) (v2, 13/01/2017)

Background

This pipeline is based on the results post-meeting discussing of the initial BioFIND

workshop that took place at Trinity Hall, Cambridge University, on Nov. 7-8. It is intended to

be a unified pipeline for the (pre)processing of MEG data for its use as a potential biomarker
of dementia. It is also, at least partially, based on the pipeline agreed for the members of the
MAGIC-AD consortium, as presented in Maestu e t al., Neuroimage Clin. 2015; 9: 103-9.

Steps of the pipeline

1. Recordings
As described in Table 3.

2. Preprocessing

2.1. Maxfilter. We propose to apply tSSS (as implemented in MaxFilter

v2.2) with movement compensation, if available.

As for the bad detection channel, there are two options. The first one
consists in using automatic bad channel rejection using the Cambridge’s
scripts. The second will be to use a manual procedure. Both options have
obviously pros and cons. The former one is faster and much easier to
replicate. The second one requires more work and is up to some point, group
dependent, yet it allows likely cleaner data.

The script and parameters for the tSSS filtering are as follows:

# Processing file namefile

echo Processing file\: namefile

date +'%d/%m/%Y %H:%M:%S.%N' >> /neuro/data/Logs/namefile.log

echo Processing file\: namefile >> /neuro/data/Logs/namefile.log

echo Bad files\: 000 000 000 000 000 000 000 000 000 000 >> /neuro/data/Logs/namefile.log
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echo >> /neuro/data/Logs/namefile.log

date +'%d/%m/%Y %H:%M:%S.%N' >> /neuro/data/Errs/namefile.err

echo Processing file\: namefile >> /neuro/data/Errs/namefile.err

echo >> /neuro/data/Errs/namefile.err

a="nice /neuro/bin/util/maxfilter -gui -f /opt/neuromag/data/namefile.fif -origin fit -frame head"

[[ sa =~ \#o\ head\ \(-?[0-9\.]+\)\ \(-?[0-9\.]JF\\\ \(-?[0-9\.]+\)\ mm ]]

a1=S{BASH_REMATCH[1]}; a2=S{BASH_REMATCH[2]}; a3=S{BASH_REMATCH(3]}

echo Origin found in Sal Sa2 Sa3 >> /neuro/dato/Logs/namefile.log

echo >> /neuro/data/Logs/namefile.log

nice /neuro/bin/util/maxfilter -gui -f fopt/neuromag/data/namefile.fif -o fopt/neuromag/data/namefile_tsss.fif -origin
Sal Sa2 Sa3 -frame head -cal /neuro/databases/sss/sss_cal.dat -bad 000 000 000 000 000 000 000 000 000 000
-st 10 -corr 0.9 -hpiwin 200 -hpistep 10 -hpicons -hpisubt off -format short -force -st inter 1>>
/neuro/data/Logs/namefile.log 2>> /neuro/data/Errs/namefile.err

echo >> /neuro/data/Logs/namefile.log

echo >> /neuro/data/Logs/namefile.log

echo >> /neuro/data/Errs/namefile.err

echo >> /neuro/data/Errs/namefile.err

2.2. Application of an automatic artefact detection: blinks, jumps and
muscle. We propose to use the standard FieldTrip pipeline for this
purpose.

2.3. Segmentation of the data in 4 seconds segments, with additional 2 s.
padding at both edges to account for edge effects when using the HT
later on the pipeline {in our experience the best quality/cost ratio in
order to ensure enough low frequency resolution and number of clean
trials) dismissing those artifacted fragments.

2.4. ICA: since we are working with eyes closed records, the most
straightforward option seems to be not to apply any ICA, which is also
the simplest option.

3. Source reconstruction

3.1. We agreed to use:

e Single shell head model

® LCMV beamformers combining information from both gradiometers

and magnetometers (the Oxford group scripts based on SPM). We use 1 cm spacing for the voxels,
which results in around 2459 distributed sources (-1 cm of inward
parameter).

e \We use a MNI template where we define the grid. Then, we transform
this grid to the subject space as detailed in the Fieldtrip webpage:

“ http.//www.fieldtriptoolbox.org/example/create_single-subject_grids_i
n_individual_head_space_that_are_all_aligned_in_mni_space”

3.2 On the anatomical parcellation and the choice of a representative time
series from each ROI, the consensus was to try two different options in each
case, as follows:

e Parcellation atlas: we decided to try AAL and Oxford-Harvard. We use

a modified Oxford-Harvard, which typically contains 64 ROls (around

60 cortical ones plus amygdala and hippocampus).

e Representative time series: here we will check the use of the first PCA

(as Oxford does) and the center voxel (Amsterdam’s approach).

This results in 2x2=4 different sets of ROIs time series to test.
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Terminology

AAL: automatic anatomical labeling atlas
AD: Alzheimer’s Disease

COPE: contrast of parameter estimate
CSF: cerebrospinal fluid

FC: functional connectivity

FTLD: frontotemporal lobar degeneration
Grad: gradiometers

GM: gray matter

GLM: general linear model

HMM: Hidden Markov Model

MAG: magnetometers

MCI: mild cognitive impairment

MEG: magnetoencephalography

MI: mutual information

MMSE: Mini Mental State Exam

MRI: magnetic resonance imaging

PCA: principal component analysis

PLV: phase locking value

WM: white matter
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