Principal Investigators

    BARMADA, SAMI

    Institution

    UNIVERSITY OF MICHIGAN

    Contact information of lead PI

    Country

    USA

    Title of project or programme

    RNA decay in amyotrophic lateral sclerosis and frontotemporal lobar degeneration

    Source of funding information

    NIH (NINDS)

    Total sum awarded (Euro)

    € 1,777,522.94

    Start date of award

    01/08/2016

    Total duration of award in years

    5

    The project/programme is most relevant to:

    Motor neurone diseases|Alzheimer's disease & other dementias

    Keywords

    RNA Decay, Frontotemporal Lobar Degenerations, Amyotrophic Lateral Sclerosis, neuronal survival, induced pluripotent stem cell

    Research Abstract

    Abstract Maintenance of RNA homeostasis involves a dynamic balance between RNA synthesis and turnover. This balance is critical for transcriptionally active cells such as neurons, as disruptions to any individual component can lead to RNA misprocessing and cell death. Our preliminary evidence indicates that deficiencies in RNA decay represent a fundamental and heretofore unrecognized mechanism driving neuronal dysfunction and death in the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Our goals with this proposal are to elucidate the role of RNA decay in the pathogenesis of ALS and FTLD, and investigate a unique and promising therapeutic strategy affecting RNA decay. Based upon the results of initial studies, we propose that in ALS and the most common subtype of FTLD, characterized by neuronal deposits of the RNA binding protein TDP43, RNA homeostasis is disrupted by an inappropriate interaction between TDP43 and the RNA helicase UPF1, ultimately resulting in neurodegeneration. We will test this model by i) determining the impact of the TDP43-UPF1 interaction on neuronal survival and RNA decay, ii) evaluating if deficient RNA decay is sufficient and/or necessary for pathologic TDP43 deposition in neurons, and iii) assessing whether UPF1 expression improves neuronal survival by restoring TDP43 and RNA homeostasis. We will pursue these aims using a combination of longitudinal single-cell microscopy of human neurons derived from ALS and FTLD patients, CRISPR/Cas9 genome editing and high-throughput sequencing of pulse-labeled RNA. The multifaceted approach proposed here promises to uncover key pathways controlling neuronal survival in healthy cells and in those affected by ALS and FTLD, and will bring us one step closer to achieving our long-term goal of developing an effective treatment for these and other relentlessly progressive neurodegenerative disorders.

    Lay Summary

    Project Narrative This proposal focuses on the contribution of RNA decay to neuronal dysfunction and death in the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The investigations described here will uncover essential connections between the RNA binding protein TDP43, RNA decay and neurodegeneration that can be leveraged into novel therapeutic strategies. We will also elucidate the mechanism of action of UPF1, a potent neuroprotective agent that has shown promise in disease models.

    Further information available at:

Types: Investments > €500k
Member States: United States of America
Diseases: Alzheimer's disease & other dementias, Motor neurone diseases
Years: 2016
Database Categories: N/A
Database Tags: N/A

Export as PDF