Yearly Archives: 2017

A study published in Nature Communications announces a groundbreaking advancement which could potentially help patients requiring stem cell therapies for spinal cord injuries, stroke, Parkinson’s disease, Alzheimer’s disease, arthritic joints or any other condition requiring tissue regeneration.

Living organisms’ cells use a remarkable signaling machinery that has the capacity to switch signals on and off to activate complex processes. Until now, building artificial materials to replicate this dynamic capacity has been almost impossible.

The study reports the development of the first-ever synthetic material that has the capability to trigger reversibly this type of dynamic signaling. The platform could both lead to materials that manage stem cells for more effective regenerative therapies, and also allow scientists to study and develop new ways to control the fate of cells and their functions. One potential use of the new technology could help cure Parkinson’s disease. The patient’s own skin cells could be converted to stem cells using existing techniques. The new technology could help expand the newly converted stem cells in vitro, then signal them to differentiate into dopamine-producing neurons, which could then be transplanted back to the patient.

In the future, it may be possible to perform the process in vivo, using stem cells encapsulated in the new material injected directly into a targeted location. The patient would then receive soluble molecules to proliferate and differentiate the transplanted cells.

Paper: „New technology to manipulate cells could help treat Parkinson’s, arthritis, other diseases: DNA strands in materials act like traffic signals to start, stop cell activity or regenerate tissue”
Reprinted from materials provided by Northwestern University.

A team of researchers has identified two genes that influence a person’s risk of developing Alzheimer’s disease.

The new finding, which builds on previous work of identifying 24 susceptibility genes, enables a better understanding of the mechanisms underlying the disease and offers further hope in developing new treatments. The work was published in Nature Genetics.

The two novel genes, which were not previously considered candidates for Alzheimer’s risk, were identified during a study which compared the DNA of tens of thousands of individuals with Alzheimer’s with aged-matched people who are free from the disease.

In addition to these two genes, the researchers also discovered a possible network of other genes and proteins that may be implicated in the development of Alzheimer’s disease.  The study also suggested that immune cells could play a causal role in Alzheimer’s, which may lead to new treatment approaches and targets, the scientists report.

Finally, the researchers say that the genes identified in the study reinforce the importance of microglia, which are responsible for clearing up damaged cells and proteins.

Paper:“Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease”

Reprinted from materials provided by Cardiff University.

People at risk for Alzheimer’s disease who do more moderate-intensity physical activity, but not light-intensity physical activity, are more likely to have healthy patterns of glucose metabolism in their brain, according to a new study.

Results of the research were published in the Journal of Alzheimer’s Disease.

Researchers used accelerometers to measure the daily physical activity of participants, all of whom are in late middle-age and at high genetic risk for Alzheimer’s disease, but presently show no cognitive impairment. Activity levels were measured for one week, quantified, and analyzed. This approach allowed scientists to determine the amount of time each subject spent engaged in light, moderate, and vigorous levels of physical activity. Light physical activity is equivalent to walking slowly, while moderate is equivalent to a brisk walk and vigorous a strenuous run. Data on the intensities of physical activity were then statistically analyzed to determine how they corresponded with glucose metabolism – a measure of neuronal health and activity – in areas of the brain known to have depressed glucose metabolism in people with Alzheimer’s disease. To measure brain glucose metabolism, researchers used a specialized imaging technique called 18F-fluorodeoxyglucose positron emission tomography (FDG-PET).

Moderate physical activity was associated with healthier (greater levels of) glucose metabolism in all brain regions analyzed. The researchers noted a step-wise benefit: subjects who spent at least 68 minutes per day engaged in moderate physical activity showed better glucose metabolism profiles than those who spent less time.

The researchers say that, in terms of next steps, they will focus on ongoing research striving to better elucidate the neuroprotective effect of exercise against Alzheimer’s disease.

Paper:“Moderate Physical Activity is Associated with Cerebral Glucose Metabolism in Adults at Risk for Alzheimer’s Disease”
Reprinted from materials provided by IOS Press.

Parkinson’s disease is commonly thought of as a movement disorder, but after years of living with the disease, approximately 25 percent of patients also experience deficits in cognition that impair function. A newly developed research tool may help predict a patient’s risk for developing dementia and could enable clinical trials aimed at finding treatments to prevent the cognitive effects of the disease.

The study, published in Lancet Neurology, combined data from 3,200 people with Parkinson’s disease, representing more than 25,000 individual clinical assessments and evaluated seven known clinical and genetic risk factors associated with developing dementia. From this information, they built a computer-based risk calculator that may predict the chance that an individual with Parkinson’s will develop cognitive deficits.

Currently available Parkinson’s medications are only effective in improving motor deficits caused by the disease. However, the loss of cognitive abilities severely affects quality of life and independence. One barrier to developing treatments for the cognitive effects of Parkinson’s disease is the considerable variability among patients. As a result, researchers must enroll several hundred patients when designing clinical trials to test treatments.

According to the researchers, their new tool – which would allow for the selection of only patients at high risk for developing dementia – could lead to the development of more efficient trials.

The researchers also noted that a patient’s education appeared to have a powerful impact on the risk of memory loss. The more years of formal education patients in the study had, the greater was their protection against cognitive decline.

Moving forward, the researchers plan to further improve the cognitive risk score calculator. The team is scanning the genome of patients to hunt for new progression genes. Ultimately, it is their hope that the tool can be used in the clinic in addition to helping with clinical trial design.

Paper: “Prediction of cognition in Parkinson’s disease with a clinical–genetic score: a longitudinal analysis of nine cohorts”
Reprinted from materials provided by NIH/National Institute of Neurological Disorders and Stroke.

The Joint Programming initiative on Neurodegenerative Diseases research aims to begin a dialogue with companies active in the neurodegenerative disease field, including imaging, diagnostics, IT, medical devices and more. This dialogue will foster collaboration and help JPND orient its research in the coming years.

To this end, JPND is organising a workshop on Industry-Academia Collaboration in Neurodegenerative Research. The full agenda of the workshop can be found here. It will be held on 12 October as part of the Meet in Italy for Life Sciences event, which will take place in Turin.

This workshop is free. To register, please send an email to [email protected].

A new study has uncovered a crucial piece into why playing a musical instrument can help older adults retain their listening skills and ward off age-related cognitive declines.

The study, published in the Journal of Neuroscience, found that learning to play a sound on a musical instrument alters the brain waves in a way that improves a person’s listening and hearing skills over a short time frame. This change in brain activity demonstrates the brain’s ability to rewire itself and compensate for injuries or diseases that may hamper a person’s capacity to perform tasks.

The study involved 32 young, healthy adults who had normal hearing and no history of neurological or psychiatric disorders. The brain waves of participants were first recorded while they listened to bell-like sounds from a Tibetan singing bowl (a small bell struck with a wooden mallet to create sounds). After listening to the recording, half of the participants were provided the Tibetan singing bowl and asked to recreate the same sounds and rhythm by striking it and the other half recreated the sound by pressing a key on a computer keypad.

Among those who created music, direct changes in the brain were observed following just a single session, the researchers said.

The study’s next steps involve analyzing recovery between stroke patients with musical training compared to physiotherapy and the impact of musical training on the brains of older adults.

Paper: “Sound-making actions lead to immediate plastic changes of neuromagnetic evoked responses and induced beta-band oscillations during perception”
Reprinted from materials provided by Baycrest Centre for Geriatric Car.

Many longitudinal cohort studies exist across Europe that hold the kind of data that would help researchers better understand the development and progression of neurodegenerative diseases. To help researchers get the most out of this cohort data, JPND funded ten international, expert Working Groups beginning in 2014. The objective of this initiative was to develop recommendations and guidelines for maximizing the benefits of research using longitudinal cohorts.

JPND has compiled the results of the Working Groups’ reports in a paper published in Frontiers in Neuroscience.

JPND continues to emphasize the importance of cohort studies and is committed to helping researchers access cohort data by preparing the launch of a user-friendly Global Cohort Portal entirely dedicated to neurodegenerative diseases, to go live in autumn, 2017.