Yearly Archives: 2016

A laboratory study indicates that the main protein involved in Parkinson’s disease pathology does not behave as a prion when overexpressed.

In Parkinson’s disease, the protein alpha-synuclein aggregates within neurons of patients and appears to propagate across interconnected areas of the brain. How this happens remains largely unknown. It has been proposed that alpha-synuclein may behave like a prion: pathological forms of the protein may be capable of changing the conformation of normal alpha-synuclein and thus triggering its aggregation and neuron-to-neuron propagation (a phenomenon referred to as “seeding”). Recent findings by scientists reveal that aggregation, spreading and pathology caused by alpha-synuclein do not necessarily involve prion-like seeding. Instead, they could be triggered by enhanced alpha-synuclein expression and trans-neuronal passage of monomeric and oligomeric forms of the protein.

“We believe that these findings bear a number of important implications for disease pathogenesis. Not only can we conclude that long-distance diffusion of alpha-synuclein does not necessarily require the generation of prion-like species,” said researcher Donato Di Monte. „Our data also reveal that spreading and pathology can be triggered by simple overexpression of the protein and are mediated, at least initially, by monomeric and/or oligomeric alpha-synuclein.”

Researchers report on this in the journal Brain.

 

Source: DZNE

Men taking androgen deprivation therapy (ADT) for prostate cancer were almost twice as likely to be diagnosed with Alzheimer’s disease in the years that followed than those who didn’t undergo the therapy, an analysis of medical records from two large hospital systems has shown. Men with the longest durations of ADT were even more likely to be diagnosed with Alzheimer’s disease.

The findings, published in the Journal of Clinical Oncology, do not prove that ADT increases the risk of Alzheimer’s disease. But the authors say they clearly point to that possibility, and are consistent with other evidence that low levels of testosterone may weaken the aging brain’s resistance to Alzheimer’s.

For the study, researchers evaluated two large sets of medical records, one from the Stanford health system and the other from Mt. Sinai Hospital in New York City. The researchers scanned the records of 1.8 million patients from Stanford Health Care, and, through a prior institutional research agreement, 3.7 million patients from Mount Sinai Hospital.

Among this cohort, they identified about 9,000 prostate cancer patients at each institution, 16,888 of whom had non-metastatic prostate cancer. A total of 2,397 had been treated with androgen deprivation therapy. The researchers compared these ADT patients with a control group of non-ADT prostate cancer patients, matched according to age and other factors.

Using two different methods of statistical analysis, the team showed that the ADT group, compared to the control group, had significantly more Alzheimer’s diagnoses in the years following the initiation of androgen-lowering therapy. By the most sophisticated measure, members of the ADT group were about 88 percent more likely to get Alzheimer’s.

Source: Penn Medicine

The ERA-NET NEURON has launched a new call for research proposals that will aim to address key questions relating to external insults to the central nervous system. These insults often cause permanent disability and constitute a heavy burden for patients and their families.

The call will accept proposals ranging from understanding basic mechanisms of disease through proof-of-concept clinical studies in humans to neurorehabilitation. The focus of the call is on primary physical insults to the central nervous system, i.e. Traumatic Brain Injury (TBI) and Spinal Cord Injury (SCI). The call covers acute traumatic events over the entire lifespan.

Excluded from this call are research projects on haemorrhage and hypoxia. Moreover, research on psychological/mental consequences of insults, including stress-related disorders (e.g. post-traumatic stress disorder), is not part of the present call. Research on neurodegenerative disorders will not be eligible in the present call.

The ERA-NET NEURON funding organizations particularly aim to promote multi-disciplinary work and to encourage translational research proposals that combine basic and clinical approaches, for the benefit of the affected patients.

The deadline for pre-proposal submission is March 14, 2016.

Visit the ERA-NET NEURON website to learn more about the call and to apply.

The Innovative Medicines Initiative (IMI) has launched a new call for research proposals that will aim to accelerate the development of medicines in a number of key areas, including neurological disorders.

The Alzheimer’s disease and Parkinson’s disease topic of the call focuses on better understanding how the protein tangles found in both diseases spread through the brain, with the ultimate goal of establishing new drug targets.

The IMI initiative, a partnership between the European Union and the pharmaceutical industry association EFPIA, aims to stimulate the development of safer and more effective medicines.

Other topics in the call, known as IMI 2 – Call 7, include safety, pain, cancer, eye diseases, and big data. Call 7 has a budget of €46.8 million from IMI, which will be matched by €46.8 million from the EFPIA companies in the projects. The submission deadline for this call is March 17, 2016.

IMI simultaneously launched a second call, known as IMI 2 – Call 8, for research proposals on Ebola and related diseases.

Visit the IMI website to learn more about the call topics and to apply.

The EU Joint Programme – Neurodegenerative Disease Research (JPND) has announced a rapid-action call inviting leading scientists in the field to bring forward novel approaches that will enhance the use of brain imaging for neurodegenerative disease research.

Imaging techniques such as MR, PET and EEG mapping have brought about a dramatic improvement in the understanding of neurodegenerative diseases such as Alzheimer’s disease. In recent years, access to cutting-edge imaging technologies and platforms has expanded, and advances have been made in the harmonisation of acquisition procedures across scanners and vendors. However, fully capitalising on the use of brain imaging technologies for neurodegeneration research will require the development of new methodologies and the ability to achieve image acquisition and analysis at scale and at the global level.

The aim of the call is to establish a limited number of transnational working groups to address the key challenges facing the use of new and innovative brain imaging techniques in neurodegenerative disease research. The working groups will be community-led and will establish ‘best practice’ guidelines and/or methodological frameworks to overcome these barriers. Each working group can bid up to €50,000 for the support of its activities, which are expected to run for a maximum of 9 months.

According to Professor Philippe Amouyel, Chair of the JPND Management Board:

“JPND recognises that state-of-the-art brain imaging techniques are a vital resource for neurodegenerative disease research. However, achieving scalability for these technologies poses new challenges. For this reason, we’ve launched a rapid-action call inviting international research teams to address the most urgent issues in harmonisation and alignment in neuroimaging. The establishment of effective new guidelines and methodological frameworks will represent a critical step toward the full exploitation of brain imaging in neurodegenerative disease research.”

The following neurodegenerative diseases are included in the call:

  • Alzheimer’s disease and other dementias
  • Parkinson’s disease and PD‐related disorders
  • Prion diseases
  • Motor neuron diseases
  • Huntington’s disease
  • Spinocerebellar ataxia (SCA)
  • Spinal muscular atrophy (SMA)

Proposals must be submitted by 23:59H C.E.T. on March 10, 2016.

For more information about the call, please click here.