The body has a variety of natural defences to protect itself against neurodegeneration, but as we age, these defences become progressively impaired and can get overwhelmed.
Researchers have identified a drug that targets the first step in the toxic chain reaction leading to the death of brain cells, suggesting that treatments could be developed to protect against Alzheimer’s disease, in a similar way to how statins are able to reduce the risk of developing heart disease.
The drug, which is an approved anti-cancer treatment, has been shown to delay the onset of Alzheimer’s disease, both in a test tube and in nematode worms. It has previously been suggested that statin-like drugs – which are safe and can be taken widely by those at risk of developing disease – might be a prospect, but this is the first time that a potential ‘neurostatin’ has been reported.
When the drug was given to nematode worms genetically programmed to develop Alzheimer’s disease, it had no effect once symptoms had already appeared. But when the drug was given to the worms before any symptoms became apparent, no evidence of the condition appeared, raising the possibility that this drug, or other molecules like it, could be used to reduce the risk of developing Alzheimer’s disease. The results are reported in the journal Science Advances.
By analysing the way the drug, called bexarotene, works at the molecular level, the international team of researchers, from the University of Cambridge, Lund University and the University of Groningen, found that it stops the first step in the molecular cascade that leads to the death of brain cells. This step, called primary nucleation, occurs when naturally occurring proteins in the body fold into the wrong shape and stick together with other proteins, eventually forming thin filament-like structures called amyloid fibrils. This process also creates smaller clusters called oligomers, which are highly toxic to nerve cells and are thought to be responsible for brain damage in Alzheimer’s disease.
For the past two decades, researchers have attempted to develop treatments for Alzheimer’s that could stop the aggregation and proliferation of oligomers. However, these attempts have all failed, in part because there was not a precise knowledge of the mechanics of the disease’s development.
The researchers were able to determine what happens during each stage of the disease’s development, and also what might happen if one of those stages was somehow switched off.
The researchers assembled a library of more than 10,000 small molecules that interact in some way with amyloid-beta, a molecule that plays a vital role in Alzheimer’s disease. They first analysed molecules that were either drugs already approved for some other purpose, or drugs developed for Alzheimer’s disease or other similar conditions which had failed clinical trials.
The first successful molecule they identified was bexarotene, which is approved by the US Food and Drug Administration for the treatment of lymphoma. One of the key advances of the current work is that by understanding the mechanisms of how Alzheimer’s disease develops in the brain, the researchers were able to target
Earlier studies of bexarotene had suggested that the drug could actually reverse Alzheimer’s symptoms by clearing amyloid-beta aggregates in the brain, which received a great deal of attention. However, the earlier results, which were later called into question, were based on a completely different mode of action – the clearance of aggregates – than the one reported in the current study. By exploiting their novel approach, which enables them to carry out highly quantitative analysis of the aggregation process, the researchers have now shown that compounds such as bexarotene could instead be developed as preventive drugs, because its primary action is to inhibit the crucial first step in the aggregation of amyloid-beta.
Source: University of Cambridge