Tag Archives: Motor Neuron Disease

The EU Joint Programme – Neurodegenerative Disease Research (JPND) has announced a rapid-action call inviting leading scientists in the field to bring forward novel approaches that will enhance the use of brain imaging for neurodegenerative disease research.

Imaging techniques such as MR, PET and EEG mapping have brought about a dramatic improvement in the understanding of neurodegenerative diseases such as Alzheimer’s disease. In recent years, access to cutting-edge imaging technologies and platforms has expanded, and advances have been made in the harmonisation of acquisition procedures across scanners and vendors. However, fully capitalising on the use of brain imaging technologies for neurodegeneration research will require the development of new methodologies and the ability to achieve image acquisition and analysis at scale and at the global level.

The aim of the call is to establish a limited number of transnational working groups to address the key challenges facing the use of new and innovative brain imaging techniques in neurodegenerative disease research. The working groups will be community-led and will establish ‘best practice’ guidelines and/or methodological frameworks to overcome these barriers. Each working group can bid up to €50,000 for the support of its activities, which are expected to run for a maximum of 9 months.

According to Professor Philippe Amouyel, Chair of the JPND Management Board:

“JPND recognises that state-of-the-art brain imaging techniques are a vital resource for neurodegenerative disease research. However, achieving scalability for these technologies poses new challenges. For this reason, we’ve launched a rapid-action call inviting international research teams to address the most urgent issues in harmonisation and alignment in neuroimaging. The establishment of effective new guidelines and methodological frameworks will represent a critical step toward the full exploitation of brain imaging in neurodegenerative disease research.”

The following neurodegenerative diseases are included in the call:

  • Alzheimer’s disease and other dementias
  • Parkinson’s disease and PD‐related disorders
  • Prion diseases
  • Motor neuron diseases
  • Huntington’s disease
  • Spinocerebellar ataxia (SCA)
  • Spinal muscular atrophy (SMA)

Proposals must be submitted by 23:59H C.E.T. on March 10, 2016.

For more information about the call, please click here.

 

The EU Joint Programme – Neurodegenerative Disease Research (JPND) will shortly begin another action to support working groups on “Harmonisation and Alignment in Brain Imaging Methods for Neurodegeneration”.

The aim of the call is to establish a limited number of transnational, JPND-sponsored expert working groups to address issues of key relevance for the future use of brain imaging techniques in ND research. Each working group can bid up to €50,000 for support of its activities, which are expected to run for a maximum of 6 months.

This will be a 1-step call, anticipated to launch in early January 2016, with a likely submission deadline of March 2016. Further details will be provided on the call launch date in January 2016. However, any new ideas to tackle harmonisation and alignment in brain imaging will be welcome. For example, this may include:

  • Harmonisation of acquisition for current markers (acquisition and harmonisation of procedures, for example, for MR, FDG PET, and EEG signals)
  • Simplification of web access to image analysis environments (improving the secure access to innovative web-based image analysis environments for neurodegenerative diseases)
  • Innovative PET molecular markers (fostering the use of established and experimental PET methods)
  • Innovative ultra-high field (UHF) MR markers

Please Note:

  • Proposals are not limited to these topics, and may cover other topics within harmonisation and alignment of brain imaging methods.
  • All information regarding future JPND Call topics is subject to change.
  • Final call information will be published on the JPND website (www.jpnd.eu).

The diseases covered by JPND are:
– Alzheimer’s disease (AD) and other dementias
– Parkinson’s disease (PD) and PD‐related disorders
– Prion disease
– Motor neurone diseases (MND)
– Huntington’s Disease (HD)
– Spinocerebellar ataxia (SCA)
– Spinal muscular atrophy (SMA)

 

An international team of researchers has developed a method for fabricating nano-scale electronic scaffolds that can be injected via syringe. Once connected to electronic devices, the scaffolds can be used to monitor neural activity, stimulate tissues and even promote regenerations of neurons.

The study entitled “Syringe-injectable electronics” was recently published in the journal Nature.

Nanotechnology and revealed an innovative method to employ tiny electronic devices in the brain, or other parts of the body, as a potential therapy for a wide range of disorders, including neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). The study was performed by researchers at the Harvard University in Cambridge, Massachusetts and the National Center for Nanoscience and Technology in China.

The team had previously shown that cardiac or nerve cells grown with embedded nano-scale electronic scaffolds could generate a so-called “cyborg” tissue. The electronic devices could then record the electrical signals generated by the tissues, and measure signal changes when cardio- or neuro-stimulating drugs were administered to the cells.

Minimally invasive targeted delivery of electronics into artificial or natural structures is however a challenge. “We were able to demonstrate that we could make this scaffold and culture cells within it, but we didn’t really have an idea how to insert that into pre-existing tissue,” explained the study’s senior author Dr. Charles Lieber in a news release. Now, Dr. Lieber and colleagues have developed a pioneering method where sub-micrometer-thick mesh electronics can be delivered to their target through injection via a syringe.

Though not the first attempts at implanting electronics into the brain — deep brain stimulation has been used to treat a variety of disorders for decades — the nano-fabricated scaffolds operate on a completely different scale.

“Existing techniques are crude relative to the way the brain is wired,” Lieber explained. “Whether it’s a silicon probe or flexible polymers…they cause inflammation in the tissue that requires periodically changing the position or the stimulation. But with our injectable electronics, it’s as if it’s not there at all. They are one million times more flexible than any state-of-the-art flexible electronics and have subcellular feature sizes. They’re what I call “neuro-philic” — they actually like to interact with neurons.

Source:  Science Daily

Scientists at Mayo Clinic, Jacksonville, Florida, USA have created a novel mouse that exhibits the symptoms and neurodegeneration associated with the most common genetic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), both of which are caused by a mutation in the a gene called C9ORF72. The study was published in the journal Science.

ALS destroys nerves that control essential movements, including speaking, walking, breathing and swallowing. After Alzheimer’s disease, FTD is the most common form of early onset dementia. It is characterized by changes in personality, behavior and language due to loss of neurons in the brain’s frontal and temporal lobes. Patients with mutations in the chromosome 9 open reading frame 72 (C9ORF72) gene have all or some symptoms associated with both disorders.

“Our mouse model exhibits the pathologies and symptoms of ALS and FTD seen in patients with theC9ORF72 mutation,” said the study’s lead author, Leonard Petrucelli, Ph.D., chair and Ralph and Ruth Abrams Professor of the Department of Neuroscience at Mayo Clinic, and a senior author of the study. “These mice could greatly improve our understanding of ALS and FTD and hasten the development of effective treatments.”

To create the model, Ms. Jeannie Chew, a Mayo Graduate School student and member of Dr. Petrucelli’s team, injected the brains of newborn mice with a disease-causing version of the C9ORF72 gene. As the mice aged, they became hyperactive, anxious, and antisocial, in addition to having problems with movement that mirrored patient symptoms. The brains of the mice were smaller than normal and had fewer neurons in areas that controlled the affected behaviors. The scientists also found that the mouse brains had key hallmarks of the disorders, including toxic clusters of ribonucleic acids (RNA) and TDP-43, a protein that has long been known to go awry in the majority of ALS and FTD cases.

“Finding TDP-43 in these mice was unexpected” Dr. Petrucelli said. “We don’t yet know how foci and c9RAN proteins are linked to TDP-43 abnormalities, but with our new animal model, we now have a way to find out.” Dr. Petrucelli and his team think these results are an important step in the development of therapies for these forms of ALS and FTD and other neurodegenerative disorders.

Chew et al. “C9ORF72 Repeat Expansions in Mice Cause TDP-43 Pathology, Neuronal Loss and Behavioral Deficits,” Science, May 14, 2015. DOI: 10.1126/science.aaa9344

A study published in the journal Human Mutation revealed new genetic mutations in a domain of a dynein gene. The study, entitled “Novel mutations in the DYNC1H1 tail domain refine the genetic and clinical spectrum of dyneinopathies,” unlocks new insights into motor neuron diseases such as Spinal Muscular Atrophy.

Dynein is a microtubule motor protein that uses the energy contained in ATP (adenosine triphosphate) molecules to move. Dyneins can be either axonemal, facilitating the movement of cilia and flagella, or cytoplasmic, transporting several intracellular cargos along microtubule tracks. The movement of cytoplasmic dyneins is usually directed towards the center of the cell.

Several studies show evidence that genetic mutations in dyneins underlie some neurodegenerative disorders such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and motor neuron diseases.

Source:  SMA News Today