Tag Archives: Alzheimer’s disease

Scientists have revealed that protein clumps associated with Alzheimer’s disease are also found in the brains of people who have had a head injury.

Although previous research has shown that these clumps, called amyloid plaques, are present shortly after a brain injury – this study shows the plaques are still present over a decade after the injury.

The findings may help explain why people who have suffered a serious brain injury appear to be at increased risk of dementia. Although extensive research now suggests major head injury increases dementia risk in later life, scientists do not know the biological changes that cause this effect.

In the research, published in the journal Neurology, the team studied nine patients with moderate to severe traumatic brain injuries. Many had sustained these in road traffic accidents, such as being hit by a car, between 11 months to 17 years prior to the study. The patient underwent a brain scan that used a technique that allows scientists to view amyloid plaques. These proteins are thought to be a hallmark of Alzheimer’s disease, and their formation may trigger other changes that lead to the death of brain cells.

The team also scanned the brains of healthy volunteers, and people with Alzheimer’s disease. The patients with head injury were found to have more amyloid plaques than the healthy volunteers, but fewer than those with Alzheimer’s disease.

In the head injury patients, the amyloid plaques were found to be centred mainly in two brain areas: the posterior cingulate cortex – a highly active area in the centre of the brain involved in controlling attention and memory, and the cerebellum – a region at the base of the brain involved in motor control and coordination.

In a second part of the study, the team assessed damage to so-called white matter. This is the ‘wiring’ of the brain, and enables brain cells to communicate with each other. The results showed that amyloid plaque levels in the posterior cingulate cortex were related to the amount of white matter damage, suggesting that injury to the brain’s wiring may be linked to the formation of amyloid plaques.

Source: Imperial College London

Researchers have discovered that an existing compound, previously tested for diabetes, offers hope for slowing Huntington’s Disease (HD) and its symptoms.

The study was published in Nature Medicine.

“We’re very excited by our pre-clinical testing of this compound (KD3010),” said Albert La Spada, MD, PhD, professor of pediatrics, cellular and molecular medicine and neurosciences at UC San Diego School of Medicine. “It improved motor function, reduced neurodegeneration and increased survival in a mouse model of Huntington’s disease and reduced toxicity in neurons generated from human HD stem cells.”

The discovery of the drug’s potential in HD builds upon more than a decade of research into the disorder’s underlying molecular pathology. Much of that work has centered on misfolded proteins, which are known to be key culprits in HD and several other neurodegenerative diseases.

At the cellular level, the drug improved mitochondrial energy production and helped mice get rid of the misfolded proteins. Since misfolded proteins also underlie Alzheimer’s, Parkinson’s and other neurodegenerative disorders, researchers hope that, if successful in HD, the compound can also be tested in other related neurological diseases.

Source: UC San Diego

A study has found that blocking a receptor in the brain responsible for regulating immune cells could protect against the memory and behaviour changes seen in the progression of Alzheimer’s disease.

It was originally thought that Alzheimer’s disease disturbs the brain’s immune response, but this latest study, published in the journal Brain, adds to evidence that inflammation in the brain can in fact drive the development of the disease. The findings suggest that by reducing this inflammation, progression of the disease could be halted.

The team hopes the discovery will lead to an effective new treatment for the disease, for which there is currently no cure.

The researchers used tissue samples from healthy brains and those with Alzheimer’s, both of the same age. The researchers counted the numbers of a particular type of immune cell, known as microglia, in the samples and found that these were more numerous in the brains with Alzheimer’s disease. In addition, the activity of the molecules regulating the numbers of microglia correlated with the severity of the disease.

The researchers then studied these same immune cells in mice which had been bred to develop features of Alzheimer’s. They wanted to find out whether blocking the receptor responsible for regulating microglia, known as CSF1R, could improve cognitive skills. They gave the mice oral doses of an inhibitor that blocks CSF1R and found that it could prevent the rise in microglia numbers seen in untreated mice as the disease progressed. In addition, the inhibitor prevented the loss of communication points between the nerve cells in the brain associated with Alzheimer’s, and the treated mice demonstrated fewer memory and behavioural problems compared with the untreated mice.

Importantly, the team found the healthy number of microglia needed to maintain normal immune function in the brain was maintained, suggesting the blocking of CSF1R only reduces excess microglia.

Source: University of Southampton

Caltech biologists have modified a harmless virus in such a way that it can successfully enter the adult mouse brain through the bloodstream and deliver genes to cells of the nervous system. The virus could help researchers map the intricacies of the brain and holds promise for the delivery of novel therapeutics to address diseases such as Alzheimer’s and Huntington’s. In addition, the screening approach the researchers developed to identify the virus could be used to make additional vectors capable of targeting cells in other organs.

To sneak genes past the blood-brain barrier, the researchers used a new variant of a small, harmless virus called an adeno-associated virus (AAV). The researchers developed a high-throughput selection assay, CREATE (Cre REcombinase-based AAV Targeted Evolution), that allowed them to test millions of viruses in vivo simultaneously and to identify those that were best at entering the brain and delivering genes to a specific class of brain cells known as astrocytes.

They started with the AAV9 virus and modified a gene fragment that codes for a small loop on the surface of the capsid—the protein shell of the virus that envelops all of the virus’ genetic material. Using a common amplification technique, known as polymerase chain reaction (PCR), they created millions of viral variants.

Then they used their novel selection process to determine which variants most effectively delivered genes to astrocytes in the brain. Importantly, the new process relies on strategically positioning the gene encoding the capsid variants on the DNA strand between two short sequences of DNA, known as lox sites. These sites are recognized by an enzyme called Cre recombinase, which binds to them and inverts the genetic sequence between them. By injecting the modified viruses into transgenic mice that only express Cre recombinase in astrocytes, the researchers knew that any sequences flagged by the lox site inversion had successfully transferred their genetic cargo to the target cell type—here, astrocytes.

After one week, the researchers isolated DNA from brain and spinal cord tissue, and amplified the flagged sequences, thereby recovering only the variants that had entered astrocytes.

Next, they took those sequences and inserted them back into the modified viral genome to create a new library that could be injected into the same type of transgenic mice. After only two such rounds of injection and amplification, a handful of variants emerged as those that were best at crossing the blood-brain barrier and entering astrocytes.

Through this selection process, the researchers identified a variant dubbed AAV-PHP.B as a top performer. To test AAV-PHP.B, the researchers used it to deliver a gene that codes for a protein that glows green, making it easy to visualize which cells were expressing it. They injected the AAV-PHP.B or AAV9 (as a control) into different adult mice and after three weeks used the amount of green fluorescence to assess the efficacy with which the viruses entered the brain, the spinal cord, and the retina.

“We could see that AAV-PHP.B was expressed throughout the adult central nervous system with high efficiency in most cell types,” says Gradinaru. Indeed, compared to AAV9, AAV-PHP.B delivers genes to the brain and spinal cord at least 40 times more efficiently.

The research was published in the journal Nature Biotechnology.

Source: Caltech

Men taking androgen deprivation therapy (ADT) for prostate cancer were almost twice as likely to be diagnosed with Alzheimer’s disease in the years that followed than those who didn’t undergo the therapy, an analysis of medical records from two large hospital systems has shown. Men with the longest durations of ADT were even more likely to be diagnosed with Alzheimer’s disease.

The findings, published in the Journal of Clinical Oncology, do not prove that ADT increases the risk of Alzheimer’s disease. But the authors say they clearly point to that possibility, and are consistent with other evidence that low levels of testosterone may weaken the aging brain’s resistance to Alzheimer’s.

For the study, researchers evaluated two large sets of medical records, one from the Stanford health system and the other from Mt. Sinai Hospital in New York City. The researchers scanned the records of 1.8 million patients from Stanford Health Care, and, through a prior institutional research agreement, 3.7 million patients from Mount Sinai Hospital.

Among this cohort, they identified about 9,000 prostate cancer patients at each institution, 16,888 of whom had non-metastatic prostate cancer. A total of 2,397 had been treated with androgen deprivation therapy. The researchers compared these ADT patients with a control group of non-ADT prostate cancer patients, matched according to age and other factors.

Using two different methods of statistical analysis, the team showed that the ADT group, compared to the control group, had significantly more Alzheimer’s diagnoses in the years following the initiation of androgen-lowering therapy. By the most sophisticated measure, members of the ADT group were about 88 percent more likely to get Alzheimer’s.

Source: Penn Medicine

The Innovative Medicines Initiative (IMI) has launched a new call for research proposals that will aim to accelerate the development of medicines in a number of key areas, including neurological disorders.

The Alzheimer’s disease and Parkinson’s disease topic of the call focuses on better understanding how the protein tangles found in both diseases spread through the brain, with the ultimate goal of establishing new drug targets.

The IMI initiative, a partnership between the European Union and the pharmaceutical industry association EFPIA, aims to stimulate the development of safer and more effective medicines.

Other topics in the call, known as IMI 2 – Call 7, include safety, pain, cancer, eye diseases, and big data. Call 7 has a budget of €46.8 million from IMI, which will be matched by €46.8 million from the EFPIA companies in the projects. The submission deadline for this call is March 17, 2016.

IMI simultaneously launched a second call, known as IMI 2 – Call 8, for research proposals on Ebola and related diseases.

Visit the IMI website to learn more about the call topics and to apply.

The EU Joint Programme – Neurodegenerative Disease Research (JPND) has announced a rapid-action call inviting leading scientists in the field to bring forward novel approaches that will enhance the use of brain imaging for neurodegenerative disease research.

Imaging techniques such as MR, PET and EEG mapping have brought about a dramatic improvement in the understanding of neurodegenerative diseases such as Alzheimer’s disease. In recent years, access to cutting-edge imaging technologies and platforms has expanded, and advances have been made in the harmonisation of acquisition procedures across scanners and vendors. However, fully capitalising on the use of brain imaging technologies for neurodegeneration research will require the development of new methodologies and the ability to achieve image acquisition and analysis at scale and at the global level.

The aim of the call is to establish a limited number of transnational working groups to address the key challenges facing the use of new and innovative brain imaging techniques in neurodegenerative disease research. The working groups will be community-led and will establish ‘best practice’ guidelines and/or methodological frameworks to overcome these barriers. Each working group can bid up to €50,000 for the support of its activities, which are expected to run for a maximum of 9 months.

According to Professor Philippe Amouyel, Chair of the JPND Management Board:

“JPND recognises that state-of-the-art brain imaging techniques are a vital resource for neurodegenerative disease research. However, achieving scalability for these technologies poses new challenges. For this reason, we’ve launched a rapid-action call inviting international research teams to address the most urgent issues in harmonisation and alignment in neuroimaging. The establishment of effective new guidelines and methodological frameworks will represent a critical step toward the full exploitation of brain imaging in neurodegenerative disease research.”

The following neurodegenerative diseases are included in the call:

  • Alzheimer’s disease and other dementias
  • Parkinson’s disease and PD‐related disorders
  • Prion diseases
  • Motor neuron diseases
  • Huntington’s disease
  • Spinocerebellar ataxia (SCA)
  • Spinal muscular atrophy (SMA)

Proposals must be submitted by 23:59H C.E.T. on March 10, 2016.

For more information about the call, please click here.

 

As we age or develop neurodegenerative diseases such as Alzheimer’s, our brain cells may not produce sufficient energy to remain fully functional. Researchers have discovered that an enzyme called SIRT3 that is located in mitochondria — the cell’s powerhouse — may protect mice brains against the kinds of stresses believed to contribute to energy loss. Furthermore, mice that ran on a wheel increased their levels of this protective enzyme.

Researchers used a new animal model to investigate whether they could aid neurons in resisting the energy-depleting stress caused by neurotoxins and other factors. They found the following:

  • Mice models that did not produce SIRT3 became highly sensitive to stress when exposed to neurotoxins that cause neurodegeneration and epileptic seizures.
  • Running wheel exercise increased the amount of SIRT3 in neurons of normal mice and protected them against degeneration; in those lacking the enzyme, running failed to protect the neurons.
  • Neurons could be protected against stress through use of a gene therapy technology to increase levels of SIRT3 in neurons.

These findings suggest that bolstering mitochondrial function and stress resistance by increasing SIRT3 levels may offer a promising therapeutic target for protecting against age-related cognitive decline and brain diseases.  The research team report their findings online Nov. 19 in the journal Cell Metabolism.

Source: Johns Hopkins Medicine

Investigators have discovered a mechanism behind the spread of neurofibrillary tangles – one of the two hallmarks of Alzheimer’s disease – through the brains of affected individuals. In a report in the journal Nature Communications, researchers describe finding that a particular version of the tau protein, while extremely rare even in the brains of patients with Alzheimer’s disease, is able to spread from one neuron to another and how that process occurs.

“It has been postulated that tangles – the abnormal accumulation of tau protein that fills neurons in Alzheimer’s disease – can travel from neuron to neuron as the disease progresses, spreading dysfunction through the brain as the disease progresses. But how that happens has been uncertain,” said Bradley Hyman, M.D., Ph.D., director of the Massachusetts General Hospital  (MGH) Alzheimer’s Disease Research Center and senior author of the report. “Our current study suggests one mechanism at play is that a unique and rare type of tau has the properties we were looking for – it is released from neurons, taken up by other neurons, transported up and down axons, and then released again.”

The current study revealed that, when brain samples from that mouse model were applied to cultured neurons, only 1 percent of the tau in those samples was taken up by the neurons. The tau proteins that were taken up were high molecular weight – meaning that a number of smaller proteins are bound together into a larger molecule – soluble, and studded with a large number of phosphate molecules, a known characteristic of the tau in Alzheimer’s-associated tangles.  Similar results were seen in experiments using brain samples from Alzheimer’s patients, both in cultured neurons and in living mice.

Source: Massachusetts General Hospital

Alzheimer’s disease is characterised by two types of lesions, amyloid plaques and degenerated tau protein. Cholesterol plays an important role in the physiopathology of this disease. Two research teams have shown, in a rodent model, that overexpressing an enzyme that can eliminate excess cholesterol from the brain may have a beneficial action on the tau component of the disease, and completely correct it. This is the first time that a direct relationship has been shown between the tau component of Alzheimer’s disease and cholesterol. This work is published in Human Molecular Genetics.

The first step in this work made it possible to show that injecting a viral vector, AAV-CYP46A1, effectively corrects a mouse model of amyloid pathology of the disease, the APP23 mouse. CYP46A1 thus appears to be a therapeutic target for Alzheimer’s disease.

Conversely, in vivo inhibition of CYP46A1 in the mice, using antisense RNA molecules delivered by an AAV vector administered to the hippocampus, induces an increase in the production of Aß peptides, abnormal tau protein, neuronal death and hippocampal atrophy, leading to memory problems. Together these elements reproduce a phenotype mimicking Alzheimer’s disease.

These results demonstrate the key role of cholesterol in the disease, and confirm the relevance of CYP46A1 as a potential therapeutic target (work published in Brain on 3 July 2015).

Taken together, this work now enables the research team to propose a gene therapy approach for Alzheimer’s disease: intracerebral administration of a vector, AAV-CYP46A1, in patients with early and severe forms (1% of patients, familial forms) for whom there is no available treatment.

Source: Inserm