Tag Archives: exercise

A new study has found that a healthy diet, regular physical activity and a normal body mass index can reduce the incidence of protein build-ups that are associated with the onset of Alzheimer’s disease.

In the study, 44 adults ranging in age from 40 to 85 (mean age: 62.6) with mild memory changes but no dementia underwent an experimental type of PET scan to measure the level of plaque and tangles in the brain. Researchers also collected information on participants’ body mass index, levels of physical activity, diet and other lifestyle factors. Plaque, deposits of a toxic protein called beta-amyloid in the spaces between nerve cells in the brain; and tangles, knotted threads of the tau protein found within brain cells, are considered the key indicators of Alzheimer’s.

The study, published in the American Journal of Geriatric Psychiatry, found that each one of several lifestyle factors — a healthy body mass index, physical activity and a Mediterranean diet — were linked to lower levels of plaques and tangles on the brain scans. (The Mediterranean diet is rich in fruits, vegetables, legumes, cereals and fish and low in meat and dairy, and characterized by a high ratio of monounsaturated to saturated fats, and mild to moderate alcohol consumption.)

Earlier studies have linked a healthy lifestyle to delays in the onset of Alzheimer’s. However, the new study is the first to demonstrate how lifestyle factors directly influence abnormal proteins in people with subtle memory loss who have not yet been diagnosed with dementia. Healthy lifestyle factors also have been shown to be related to reduced shrinking of the brain and lower rates of atrophy in people with Alzheimer’s.

The next step in the research will be to combine imaging with intervention studies of diet, exercise and other modifiable lifestyle factors, such as stress and cognitive health.

Reprinted from materials provided by UCLA.

As we age or develop neurodegenerative diseases such as Alzheimer’s, our brain cells may not produce sufficient energy to remain fully functional. Researchers have discovered that an enzyme called SIRT3 that is located in mitochondria — the cell’s powerhouse — may protect mice brains against the kinds of stresses believed to contribute to energy loss. Furthermore, mice that ran on a wheel increased their levels of this protective enzyme.

Researchers used a new animal model to investigate whether they could aid neurons in resisting the energy-depleting stress caused by neurotoxins and other factors. They found the following:

  • Mice models that did not produce SIRT3 became highly sensitive to stress when exposed to neurotoxins that cause neurodegeneration and epileptic seizures.
  • Running wheel exercise increased the amount of SIRT3 in neurons of normal mice and protected them against degeneration; in those lacking the enzyme, running failed to protect the neurons.
  • Neurons could be protected against stress through use of a gene therapy technology to increase levels of SIRT3 in neurons.

These findings suggest that bolstering mitochondrial function and stress resistance by increasing SIRT3 levels may offer a promising therapeutic target for protecting against age-related cognitive decline and brain diseases.  The research team report their findings online Nov. 19 in the journal Cell Metabolism.

Source: Johns Hopkins Medicine

A study of the brains of mice shows that structural deterioration associated with old age can be prevented by long-term aerobic exercise starting in mid-life, according to a research article published in PLOS Biology. Researchers found that structural changes that make the blood-brain barrier leaky and result in inflammation of brain tissues in old mice can be mitigated by allowing the animals to run regularly, so providing a potential explanation for the beneficial effects of exercise on dementia in humans.

Physical activity is already known to ameliorate the cognitive decline and sensorimotor deficits seen in old age in humans as well as in mice. To investigate the impact of long-term physical exercise on the brain changes seen in the aging mice, the researchers provided the animals with a running wheel from 12 months old (equivalent to middle aged in humans) and assessed their brains at 18 months (equivalent to ~60yrs old in humans, when the risk of Alzheimer’s disease is greatly increased). Young and old mice alike ran about two miles per night, and this physical activity improved the ability and motivation of the old mice to engage in the typical spontaneous behaviors that seem to be affected by aging. This exercise significantly reduced age-related pericyte loss in the brain cortex and improved other indicators of dysfunction of the vascular system and blood-brain barrier.

Source: PLOS Biology