Tag Archives: FTD

Ten international JPND working groups recommended for funding

The EU Joint Programme Neurodegenerative Disease Research (JPND) has released the results of a “rapid-action” call to support working groups of leading scientists to bring forward novel approaches that will enhance the use of brain imaging for neurodegenerative disease research.

Ten working groups have been recommended for funding to address the methodological challenges facing different imaging modalities, among them MRI, PET, ultrasound, MEG and EEG, as well as multimodal approaches. The working groups cover a range of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Frontotemporal dementia and Huntington’s disease.

“Brain imaging has made enormous progress in recent years and is currently one of the most promising avenues in neurodegenerative disease research,” said Professor Thomas Gasser, Chair of the JPND Scientific Advisory Board. “If we can solve the challenges in the field, brain imaging could rapidly lead to faster and better diagnoses as well as a deeper understanding of the fundamental aspects and mechanisms of neurodegeneration.”

Although imaging techniques have brought about a dramatic improvement in the understanding of neurodegenerative diseases, there remain a number of significant challenges in the field. These include the execution of multi-centre clinical trials of an unprecedented scale, data transfer across imaging centres and the use of imaging for diagnostics and for measuring clinical outcomes.

To address these questions, on January 8, 2016, JPND launched a call for community-led working groups on harmonisation and alignment in brain imaging methods. The proposals recommended for funding are for top scientists to come together and propose, through ‘best practice’ guidelines and/or methodological frameworks, how to overcome key barriers to the use of imaging in neurodegenerative disease research.

The call attracted proposals with partners from across Europe and beyond, including Asia, Australia, North America and South America. A notable number of groups based in the United States were involved in responses to the call. Funding decisions were based upon scientific evaluation and recommendations to sponsor countries by a JPND peer review panel.

“This call perfectly embodies JPND’s mission and objectives,” said Professor Philippe Amouyel, Chair of the JPND Management Board. “The purpose of JPND is to strengthen coordination and collaboration in neurodegenerative disease research across different countries. We want to ensure that research efforts are not duplicated, to build consensus and to accelerate a path toward a cure that works. This call convenes groups of leading experts to hammer out the hard questions, including the challenges of interoperability and shared and open data, to allow researchers to more rapidly and more fully exploit imaging techniques going forward.”

Each working group is expected to run for a maximum of 9 months. The outputs of the working groups are to be produced by the end of the funding period, and will be published on the JPND website and used for further JPND actions. In addition, a common workshop will be organised to bring together and present the recommendations of each working group, encouraging the further exchange of ideas and wider dissemination to different stakeholder groups.

For more information on the working groups recommended for funding, click here.

Scientists at Mayo Clinic, Jacksonville, Florida, USA have created a novel mouse that exhibits the symptoms and neurodegeneration associated with the most common genetic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), both of which are caused by a mutation in the a gene called C9ORF72. The study was published in the journal Science.

ALS destroys nerves that control essential movements, including speaking, walking, breathing and swallowing. After Alzheimer’s disease, FTD is the most common form of early onset dementia. It is characterized by changes in personality, behavior and language due to loss of neurons in the brain’s frontal and temporal lobes. Patients with mutations in the chromosome 9 open reading frame 72 (C9ORF72) gene have all or some symptoms associated with both disorders.

“Our mouse model exhibits the pathologies and symptoms of ALS and FTD seen in patients with theC9ORF72 mutation,” said the study’s lead author, Leonard Petrucelli, Ph.D., chair and Ralph and Ruth Abrams Professor of the Department of Neuroscience at Mayo Clinic, and a senior author of the study. “These mice could greatly improve our understanding of ALS and FTD and hasten the development of effective treatments.”

To create the model, Ms. Jeannie Chew, a Mayo Graduate School student and member of Dr. Petrucelli’s team, injected the brains of newborn mice with a disease-causing version of the C9ORF72 gene. As the mice aged, they became hyperactive, anxious, and antisocial, in addition to having problems with movement that mirrored patient symptoms. The brains of the mice were smaller than normal and had fewer neurons in areas that controlled the affected behaviors. The scientists also found that the mouse brains had key hallmarks of the disorders, including toxic clusters of ribonucleic acids (RNA) and TDP-43, a protein that has long been known to go awry in the majority of ALS and FTD cases.

“Finding TDP-43 in these mice was unexpected” Dr. Petrucelli said. “We don’t yet know how foci and c9RAN proteins are linked to TDP-43 abnormalities, but with our new animal model, we now have a way to find out.” Dr. Petrucelli and his team think these results are an important step in the development of therapies for these forms of ALS and FTD and other neurodegenerative disorders.

Chew et al. “C9ORF72 Repeat Expansions in Mice Cause TDP-43 Pathology, Neuronal Loss and Behavioral Deficits,” Science, May 14, 2015. DOI: 10.1126/science.aaa9344

Researchers studying frontotemporal degeneration (FTD) disease, a leading cause of early onset dementia, will receive more than $30 million over the next five years in grants from the National Institutes of Health (NIH). The funding will be used to further scientific collaboration and investigate new treatments in the quest to find a cure for FTD.

Also, in Vancouver, Canada, on October 23rd, an FTD conference demonstrated the research progress made in this awakening field, with particular emphasis on the newly forged international collaborative relationships to comprehensively examine patients and their families in longitudinal cohort studies.

Just three months after a paper outed a gene for a mitochondrial protein as a potential cause of amyotrophic lateral sclerosis-frontotemporal dementia, four new publications have made the case clear. CHCHD10 is an ALS/FTD spectrum gene.

A handful of different mutations in the gene (whose acronym stands for the tongue twister coiled-coil-helix-coiled-coil-helix domain containing 10) cause a range of symptoms comprising ALS-FTD, ALS, and also mitochondrial myopathy, according to the studies.